Computing Extremal Eigenvalues for Three-Dimensional Photonic Crystals with Wave Vectors Near the Brillouin Zone Center

The band structures of three-dimensional photonic crystals can be determined numerically by solving a sequence of generalized eigenvalue problems. However, not all of the spectral structures of these eigenvalue problems are well-understood, and not all of these eigenvalue problems can be solved efficiently. This article focuses on the eigenvalue problems corresponding to wave vectors that are close to the center of the Brillouin zone of a three dimensional, simple cubic photonic crystal. For these eigenvalue problems, there are (i) many zero eigenvalues, (ii) a couple of near-zero eigenvalues, and (iii) several larger eigenvalues. As the desired eigenvalues are the smallest positive eigenvalues, these particular spectral structures prevent regular eigenvalue solvers from efficiently computing the desired eigenvalues. We study these eigenvalue problems from the perspective of both theory and computation. On the theoretical side, the structures of the null spaces are analyzed to explicitly determine the number of zero eigenvalues of the target eigenvalue problems. On the computational side, the Krylov-Schur and Jacobi-Davidson methods are used to compute the smallest, positive, interior eigenvalues that are of interest. Intensive numerical experiments disclose how the shift values, conditioning numbers, and initial vectors affect the performance of the tested eigenvalue solvers and suggest the most efficient eigenvalue solvers.

[1]  Peter Arbenz,et al.  A comparison of solvers for large eigenvalue problems occuring in the design of resonant cavities , 1999 .

[2]  Gerard L. G. Sleijpen,et al.  Jacobi-Davidson Style QR and QZ Algorithms for the Reduction of Matrix Pencils , 1998, SIAM J. Sci. Comput..

[3]  M. Hano Finite-Element Analysis of Dielectric-Loaded Waveguides , 1984 .

[4]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[5]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[6]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[7]  D. Larkman,et al.  Photonic crystals , 1999, International Conference on Transparent Optical Networks (Cat. No. 99EX350).

[8]  J. Whiteman The Mathematics of Finite Elements and Applications. , 1983 .

[9]  Wen-Wei Lin,et al.  Preconditioning bandgap eigenvalue problems in three-dimensional photonic crystals simulations , 2010, J. Comput. Phys..

[10]  Stephen Gilmore,et al.  Evaluating the Performance of Skeleton-Based High Level Parallel Programs , 2004, International Conference on Computational Science.

[11]  E. Süli,et al.  A convergence analysis of Yee's scheme on nonuniform grids , 1994 .

[12]  J.-C. Verite,et al.  A mixed fem-biem method to solve 3-D eddy-current problems , 1982 .

[13]  G. W. Stewart,et al.  Addendum to "A Krylov-Schur Algorithm for Large Eigenproblems" , 2002, SIAM J. Matrix Anal. Appl..

[14]  G. Mur,et al.  A finite-element method for computing three-dimensional electromagnetic fields in inhomogeneous media , 1985 .

[15]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM J. Matrix Anal. Appl..

[16]  N. Madsen Divergence preserving discrete surface integral methods for Maxwell's curl equations using non-orthogonal unstructured grids , 1995 .

[17]  H. Whitney Geometric Integration Theory , 1957 .

[18]  Kesheng Wu,et al.  Thick-Restart Lanczos Method for Large Symmetric Eigenvalue Problems , 2000, SIAM J. Matrix Anal. Appl..

[19]  Ilio Galligani,et al.  Mathematical Aspects of Finite Element Methods , 1977 .

[20]  Valeria Simoncini,et al.  Algebraic formulations for the solution of the nullspace‐free eigenvalue problem using the inexact Shift‐and‐Invert Lanczos method , 2003, Numer. Linear Algebra Appl..

[21]  K Wu,et al.  Thick-Restart Lanczos Method for Electronic Structure Calculations , 1999 .

[22]  J. Volakis,et al.  Finite element method for electromagnetics : antennas, microwave circuits, and scattering applications , 1998 .

[23]  Gerard L. G. Sleijpen,et al.  Harmonic and refined Rayleigh–Ritz for the polynomial eigenvalue problem , 2008, Numer. Linear Algebra Appl..

[24]  Chien-Cheng Chang,et al.  Numerical Study of Three-Dimensional Photonic Crystals with Large Band Gaps , 2004 .

[25]  P. Arbenz,et al.  Multilevel preconditioned iterative eigensolvers for Maxwell eigenvalue problems , 2005 .

[26]  Jian-Ming Jin,et al.  The Finite Element Method in Electromagnetics , 1993 .

[27]  Christian Wieners,et al.  A computer-assisted proof for photonic band gaps , 2009 .

[28]  Ralf Hiptmair,et al.  Multilevel Method for Mixed Eigenproblems , 2002, SIAM J. Sci. Comput..

[29]  Qiang Du,et al.  Convergence Analysis of a Finite Volume Method for Maxwell's Equations in Nonhomogeneous Media , 2003, SIAM J. Numer. Anal..

[30]  Roy A. Nicolaides,et al.  Convergence analysis of a covolume scheme for Maxwell's equations in three dimensions , 1998, Math. Comput..

[31]  Zhiming Chen,et al.  Finite Element Methods with Matching and Nonmatching Meshes for Maxwell Equations with Discontinuous Coefficients , 2000, SIAM J. Numer. Anal..

[32]  J. Nédélec A new family of mixed finite elements in ℝ3 , 1986 .

[33]  Vicente Hernández,et al.  SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems , 2005, TOMS.

[34]  Jack Dongarra,et al.  Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.

[35]  John,et al.  Strong localization of photons in certain disordered dielectric superlattices. , 1987, Physical review letters.

[36]  Peter Arbenz A Comparison of Factorization-Free Eigensolvers with Application to Cavity Resonators , 2002, International Conference on Computational Science.

[37]  H. V. D. Vorst,et al.  Jacobi-davidson type methods for generalized eigenproblems and polynomial eigenproblems , 1995 .

[38]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[39]  M. Shashkov,et al.  Mimetic Discretizations for Maxwell's Equations , 1999 .

[40]  C. Kittel Introduction to solid state physics , 1954 .

[41]  Chien-Chung Chang,et al.  Large full band gaps for photonic crystals in two dimensions computed by an inverse method with multigrid acceleration. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  Dennis W. Prather,et al.  Photonic Crystals: Theory, Applications and Fabrication , 2009 .

[43]  G. W. Stewart,et al.  A Krylov-Schur Algorithm for Large Eigenproblems , 2001, SIAM J. Matrix Anal. Appl..