Nonlinear Optical Response in Graphene/WX2 (X = S, Se, and Te) van der Waals Heterostructures.

Light-frequency conversion based on two-dimensional (2D) materials is of great importance for modern nano- and integrated photonics. Herein, we report both the intrinsic (from the pure WX2 (X = S, Se, and Te)) and extrinsic (from the interface of graphene/WX2) second-order nonlinear coefficient tensor from graphene/WX2 van der Waals (vdW) heterostructures by first-principles calculations. The prominent peaks in the dispersion relation of the intrinsic second-order nonlinear coefficient in monolayer WX2 are due to the Van Hove singularity in the high-symmetry point or along the high-symmetry line with high joint density of states. The enhanced nonlinear optical response in the infrared band can be achieved in graphene/WS2 vdW heterostructures, resulting from the interlayer charge transfer between graphene and WS2. The value of the intrinsic second-order nonlinear coefficients of graphene/WSe2 vdW heterostructures is 1.5 times larger than that of pure monolayer WSe2 at the band gap energy of monolayer WSe2 because of the enhanced carrier generation after the heterostructure formation. Different from pure monolayer WX2, azimuthal angle-dependent second harmonic generation from graphene/WX2 vdW heterostructures exhibits extraordinary rotational symmetry at different photon energies, which can be used to deduce the extrinsic second-order nonlinear coefficient. These results pave the way for the nonlinear optical coefficient design based on 2D heterostructures for nonlinear nanophotonics and integrated devices.

[1]  Chuan He,et al.  Band Alignment of MoTe2/MoS2 Nanocomposite Films for Enhanced Nonlinear Optical Performance , 2019, Advanced Materials Interfaces.

[2]  S. Pan,et al.  A review on structure-performance relationship toward the optimal design of infrared nonlinear optical materials with balanced performances , 2018, Coordination Chemistry Reviews.

[3]  T. Heinz,et al.  Ultrafast dynamics in van der Waals heterostructures , 2018, Nature Nanotechnology.

[4]  Yanxue Chen,et al.  Tunable Ultrafast Nonlinear Optical Properties of Graphene/MoS2 van der Waals Heterostructures and Their Application in Solid-State Bulk Lasers. , 2018, ACS nano.

[5]  Xinlong Xu,et al.  Interface Properties Probed by Active THz Surface Emission in Graphene/SiO2/Si Heterostructures. , 2018, ACS applied materials & interfaces.

[6]  Jianlin Zhao,et al.  Extraordinary Second Harmonic Generation in ReS2 Atomic Crystals , 2018, ACS Photonics.

[7]  J. Shan,et al.  Light–valley interactions in 2D semiconductors , 2018, Nature Photonics.

[8]  H. Terrones,et al.  Large second harmonic generation in alloyed TMDs and boron nitride nanostructures , 2018, Scientific Reports.

[9]  Anton Autere,et al.  Nonlinear Optics with 2D Layered Materials , 2018, Advanced materials.

[10]  J. Shan,et al.  Valley-Selective Exciton Bistability in a Suspended Monolayer Semiconductor. , 2018, Nano letters.

[11]  Kenji Watanabe,et al.  Characterization of the second- and third-harmonic optical susceptibilities of atomically thin tungsten diselenide , 2018, Scientific Reports.

[12]  Libai Huang,et al.  Photocarrier generation from interlayer charge-transfer transitions in WS2-graphene heterostructures , 2018, Science Advances.

[13]  J. Khurgin,et al.  Plasmonic Hot Carriers-Controlled Second Harmonic Generation in WSe2 Bilayers. , 2018, Nano letters.

[14]  Chuan He,et al.  Terahertz Surface Emission from Layered MoS2 Crystal: Competition between Surface Optical Rectification and Surface Photocurrent Surge , 2018 .

[15]  Chuan He,et al.  Enhanced Nonlinear Saturable Absorption of MoS2/Graphene Nanocomposite Films , 2017 .

[16]  J. Bai,et al.  Flexible and Anisotropic Properties of Monolayer MX2 (M = Tc and Re; X = S, Se) , 2017 .

[17]  H. Petek,et al.  Phonon-Assisted Ultrafast Charge Transfer at van der Waals Heterostructure Interface. , 2017, Nano letters.

[18]  Qian Wang,et al.  An all-carbon vdW heterojunction composed of penta-graphene and graphene: Tuning the Schottky barrier by electrostatic gating or nitrogen doping , 2017 .

[19]  Qian Wang,et al.  2D halide perovskite-based van der Waals heterostructures: contact evaluation and performance modulation , 2017 .

[20]  J. Bai,et al.  Elastic, electronic, and dielectric properties of bulk and monolayer ZrS2, ZrSe2, HfS2, HfSe2 from van der Waals density‐functional theory , 2017 .

[21]  Feng Chen,et al.  Tuning of Interlayer Coupling in Large-Area Graphene/WSe2 van der Waals Heterostructure via Ion Irradiation: Optical Evidences and Photonic Applications , 2017, 1704.01567.

[22]  Anh Khoa Augustin Lu,et al.  Toward an Understanding of the Electric Field-Induced Electrostatic Doping in van der Waals Heterostructures: A First-Principles Study. , 2017, ACS applied materials & interfaces.

[23]  J. Bai,et al.  Surface Optical Rectification from Layered MoS2 Crystal by THz Time-Domain Surface Emission Spectroscopy. , 2017, ACS applied materials & interfaces.

[24]  Wei‐Qing Huang,et al.  Two-Dimensional MoS2-Graphene-Based Multilayer van der Waals Heterostructures: Enhanced Charge Transfer and Optical Absorption, and Electric-Field Tunable Dirac Point and Band Gap , 2016, 1611.02510.

[25]  Yong-Wei Zhang,et al.  Strain-Robust and Electric Field Tunable Band Alignments in van der Waals WSe2–Graphene Heterojunctions , 2016 .

[26]  K. Novoselov,et al.  2D materials and van der Waals heterostructures , 2016, Science.

[27]  X. Duan,et al.  Van der Waals heterostructures and devices , 2016 .

[28]  J. Shan,et al.  Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides , 2016, Nature Photonics.

[29]  Zhiyong Xiao,et al.  Multimodal Nonlinear Optical Imaging of MoS₂ and MoS₂-Based van der Waals Heterostructures. , 2016, ACS nano.

[30]  Wang Yao,et al.  Valley-polarized exciton dynamics in a 2D semiconductor heterostructure , 2016, Science.

[31]  Su-Huai Wei,et al.  Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier , 2016, Science Advances.

[32]  A. Jorio,et al.  Second Harmonic Generation in WSe2 , 2015 .

[33]  J. Khurgin,et al.  Charge-Induced Second-Harmonic Generation in Bilayer WSe2. , 2015, Nano letters.

[34]  Yubing Zhou,et al.  Strong Second-Harmonic Generation in Atomic Layered GaSe. , 2015, Journal of the American Chemical Society.

[35]  Aaron M. Jones,et al.  Electrical control of second-harmonic generation in a WSe2 monolayer transistor. , 2015, Nature nanotechnology.

[36]  S. Larentis,et al.  Band Alignment in WSe2-Graphene Heterostructures. , 2015, ACS nano.

[37]  Hsin-Ying Chiu,et al.  Electron transfer and coupling in graphene–tungsten disulfide van der Waals heterostructures , 2014, Nature Communications.

[38]  G. Burkard,et al.  k·p theory for two-dimensional transition metal dichalcogenide semiconductors , 2014, 1410.6666.

[39]  Zhiwen Liu,et al.  Extraordinary Second Harmonic Generation in Tungsten Disulfide Monolayers , 2014, Scientific Reports.

[40]  Oriol López Sánchez,et al.  Large-Area Epitaxial Monolayer MoS2 , 2015, ACS nano.

[41]  Lain-Jong Li,et al.  Second harmonic generation from artificially stacked transition metal dichalcogenide twisted bilayers. , 2014, ACS nano.

[42]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[43]  Yilei Li,et al.  Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. , 2013, Nano letters.

[44]  O. Hess,et al.  Two Two-Dimensional Materials Are Better than One , 2013, Science.

[45]  A. Kis,et al.  Nonvolatile memory cells based on MoS2/graphene heterostructures. , 2013, ACS nano.

[46]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[47]  R. Boyd Nonlinear Optics, Third Edition , 2008 .

[48]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[49]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[50]  Robert L. Byer,et al.  Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB/sub 2/O/sub 4/, LiIO/sub 3/, MgO:LiNbO/sub 3/, and KTP measured by phase-matched second-harmonic generation , 1990 .

[51]  A. A. Lanin,et al.  Nonlinear optics in the mid-infrared: new morning , 2017 .