Identification of Pt-based catalysts for propane dehydrogenation via a probability analysis† †Electronic supplementary information (ESI) available: Calculation details. See DOI: 10.1039/c8sc00802g

A probability-based computational screening study has successfully identified an optimal bimetallic alloy (Pt3In) for the propane dehydrogenation reaction.

[1]  Samuel A. Assefa,et al.  SURF: improving classifiers in production by learning from busy and noisy end users , 2020, ICAIF.

[2]  Fuat E. Celik,et al.  Effect of Tin Coverage on Selectivity for Ethane Dehydrogenation over Platinum-Tin Alloys , 2016 .

[3]  Tejs Vegge,et al.  Identifying systematic DFT errors in catalytic reactions , 2015 .

[4]  Xinggui Zhou,et al.  Size-Dependent Reaction Mechanism and Kinetics for Propane Dehydrogenation over Pt Catalysts , 2015 .

[5]  Jinlong Gong,et al.  Molecular understandings on the activation of light hydrocarbons over heterogeneous catalysts , 2015, Chemical science.

[6]  Xinggui Zhou,et al.  Tuning selectivity and stability in propane dehydrogenation by shaping Pt particles: A combined experimental and DFT study , 2014 .

[7]  Lidong Li,et al.  Sn surface-enriched Pt-Sn bimetallic nanoparticles as a selective and stable catalyst for propane dehydrogenation , 2014 .

[8]  J. Greeley,et al.  First-principles analysis of defect-mediated Li adsorption on graphene. , 2014, ACS applied materials & interfaces.

[9]  B. Weckhuysen,et al.  Catalytic dehydrogenation of light alkanes on metals and metal oxides. , 2014, Chemical reviews.

[10]  Shuirong Li,et al.  Propane dehydrogenation over Pt-Cu bimetallic catalysts: the nature of coke deposition and the role of copper. , 2014, Nanoscale.

[11]  Thomas Bligaard,et al.  Assessing the reliability of calculated catalytic ammonia synthesis rates , 2014, Science.

[12]  K. Honkala,et al.  Selectivity in propene dehydrogenation on Pt and Pt3Sn surfaces from first principles , 2013 .

[13]  Jens K Nørskov,et al.  Investigation of Catalytic Finite-Size-Effects of Platinum Metal Clusters. , 2013, The journal of physical chemistry letters.

[14]  Thomas Bligaard,et al.  Density functionals for surface science: Exchange-correlation model development with Bayesian error estimation , 2012 .

[15]  Xinggui Zhou,et al.  First-Principles Calculations of Propane Dehydrogenation over PtSn Catalysts , 2012 .

[16]  M. Chi,et al.  Novel Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation , 2011 .

[17]  K. Honkala,et al.  Density Functional Theory Study on Propane and Propene Adsorption on Pt(111) and PtSn Alloy Surfaces , 2011 .

[18]  Xinggui Zhou,et al.  DFT study of propane dehydrogenation on Pt catalyst: effects of step sites. , 2011, Physical chemistry chemical physics : PCCP.

[19]  V. Galvita,et al.  Catalyst performance of novel Pt/Mg(Ga)(Al)O catalysts for alkane dehydrogenation , 2010 .

[20]  A. Ballarini,et al.  n-Butane dehydrogenation on Pt, PtSn and PtGe supported on γ-Al2O3 deposited on spheres of α-Al2O3 by washcoating , 2010 .

[21]  V. Galvita,et al.  Ethane dehydrogenation on Pt/Mg(Al)O and PtSn/Mg(Al)O catalysts , 2010 .

[22]  Matthew Neurock,et al.  Reactivity theory of transition-metal surfaces: a Brønsted-Evans-Polanyi linear activation energy-free-energy analysis. , 2010, Chemical reviews.

[23]  A S Bondarenko,et al.  Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. , 2009, Nature chemistry.

[24]  A. Andreasen,et al.  Degree of rate control: how much the energies of intermediates and transition states control rates. , 2009, Journal of the American Chemical Society.

[25]  G. Henkelman,et al.  A grid-based Bader analysis algorithm without lattice bias , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[26]  N. Rösch,et al.  Size-Dependence of Adsorption Properties of Metal Nanoparticles: A Density Functional Study on Palladium Nanoclusters , 2008 .

[27]  Thomas Bligaard,et al.  Identification of Non-Precious Metal Alloy Catalysts for Selective Hydrogenation of Acetylene , 2008, Science.

[28]  Ture R. Munter,et al.  Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. , 2007, Physical review letters.

[29]  J. Nørskov,et al.  Computational high-throughput screening of electrocatalytic materials for hydrogen evolution , 2006, Nature materials.

[30]  Jens K Nørskov,et al.  Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. , 2006, Angewandte Chemie.

[31]  B. Weckhuysen,et al.  Mechanistic Insight in the Ethane Dehydrogenation Reaction over Cr/Al2O3 Catalysts , 2005 .

[32]  J. Sethna,et al.  Bayesian error estimation in density-functional theory. , 2005, Physical review letters.

[33]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[34]  J. Dumesic,et al.  Selective dehydrogenation of isobutane over supported Pt/Sn catalysts , 2000 .

[35]  G. Henkelman,et al.  A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives , 1999 .

[36]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[37]  M. Schmal,et al.  Characterization and Catalytic Activity of Bimetallic Pt-In/Al2O3and Pt-Sn/Al2O3Catalysts , 1998 .

[38]  J. Dumesic,et al.  Kinetic Studies of Isobutane Dehydrogenation and Isobutene Hydrogenation over Pt/Sn-Based Catalysts , 1998 .

[39]  Scheffler,et al.  GaAs equilibrium crystal shape from first principles. , 1996, Physical review. B, Condensed matter.

[40]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[41]  Charles T. Campbell,et al.  Future Directions and Industrial Perspectives Micro- and macro-kinetics: Their relationship in heterogeneous catalysis , 1994 .

[42]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[43]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[44]  F. Ribeiro,et al.  Importance of metal-oxide interfaces in heterogeneous catalysis: A combined DFT, microkinetic, and experimental study of water-gas shift on Au/MgO , 2017 .

[45]  W. Marsden I and J , 2012 .