Determining the vibrational entropy change in the giant magnetocaloric material LaFe11.6Si1.4 by nuclear resonant inelastic x-ray scattering

[1]  F. Hellman,et al.  Thermodynamic measurements of Fe-Rh alloys. , 2012, Physical review letters.

[2]  S. Russek,et al.  Stability and Magnetocaloric Properties of Sintered La(Fe, Mn, Si) $_{13}$ H $_{z}$ Alloys , 2011 .

[3]  H Wende,et al.  Mastering hysteresis in magnetocaloric materials , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[4]  M. Balli,et al.  Neutron diffraction study of LaFe11.31Si1.69 and LaFe11.31Si1.69H1.45 compounds , 2010 .

[5]  A R Plummer,et al.  Introduction to Solid State Physics , 1967 .

[6]  Saunders,et al.  Acoustic-mode vibrational anharmonicity related to the anomalous thermal expansion of Invar iron alloys. , 1992, Physical review. B, Condensed matter.

[7]  S. Fujieda,et al.  Itinerant-electron Metamagnetic Transition and Large Magnetocaloric Effects in La(FexSi1-x)13 Compounds and Their Hydrides , 2003 .

[8]  Hoffmann,et al.  First-principles calculations of the instability leading to the Invar effect. , 1993, Physical review. B, Condensed matter.

[9]  L. Cohen,et al.  Low-temperature specific heat in hydrogenated and Mn-doped La(Fe, Si)(13) , 2016 .

[10]  O. Delaire,et al.  Effects of composition, temperature, and magnetism on phonons in bcc Fe-V alloys , 2010 .

[11]  D. Salahub,et al.  Explanation of the Invar Anomalies from Molecular-Orbital Cluster Calculations , 1981 .

[12]  T. S. Toellner,et al.  Monochromatization of synchrotron radiation for nuclear resonant scattering experiments , 2000 .

[13]  S. I. Makarov,et al.  Element-resolved thermodynamics of magnetocaloric LaFe(13-x)Si(x). , 2014, Physical review letters.

[14]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[15]  K. Schwarz,et al.  Itinerant metamagnetism in YCO2 , 1984 .

[16]  Konstantin P. Skokov,et al.  Systematic investigation of Mn substituted La(Fe,Si)13 alloys and their hydrides for room-temperature magnetocaloric application , 2014 .

[17]  H. Wende,et al.  Impact of lattice dynamics on the phase stability of metamagnetic FeRh: Bulk and thin films , 2016, 1608.04268.

[18]  Carl B. Zimm,et al.  Potential for cost effective magnetocaloric air conditioning systems , 2005 .

[19]  O. Delaire,et al.  Phonon softening and metallization of a narrow-gap semiconductor by thermal disorder , 2011, Proceedings of the National Academy of Sciences.

[20]  P. Wendhausen,et al.  Effect of carbon on magnetocaloric effect of LaFe11.6Si1.4 compounds and on the thermal stability of its hydrides , 2012 .

[21]  C. .. Pandya,et al.  Volume variation of Gruneisen parameters offcc transition metals , 2002 .

[22]  D. Ryan,et al.  Structure and magnetic transition of LaFe13-xSixcompounds , 2003 .

[23]  Oliver Gutfleisch,et al.  Giant magnetocaloric effect driven by structural transitions. , 2012, Nature materials.

[24]  F. Hu,et al.  LETTER TO THE EDITOR: Magnetic properties and magnetic entropy change of LaFe11.5Si1.5Hy interstitial compounds , 2003 .

[25]  W. Sturhahn,et al.  CONUSS and PHOENIX: Evaluation of nuclear resonant scattering data , 2000 .

[26]  F. Hu,et al.  Entropy changes associated with the first-order magnetic transition in LaFe13-xSix , 2006 .

[27]  Xavier Moya,et al.  Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys , 2005, Nature materials.

[28]  L. Schultz,et al.  Multiple metamagnetic transitions in the magnetic refrigerant La(Fe,Si)13Hx. , 2008, Physical review letters.

[29]  Alp,et al.  Phonon density of states measured by inelastic nuclear resonant scattering. , 1995, Physical review letters.

[30]  H. Emmerich,et al.  Caloric Effects in Ferroic Materials: New Concepts for Cooling , 2012 .

[31]  A. Tishin,et al.  The Magnetocaloric Effect and its Applications , 2003 .

[32]  J. C. Ho,et al.  Mössbauer spectroscopic evaluation of chemical and electronic distributions in La(Fe0.81Si0.19)13 , 2004 .

[33]  K. Gschneidner,et al.  Recent developments in magnetocaloric materials , 2003 .

[34]  G. D. de Wijs,et al.  Mixed Magnetism for Refrigeration and Energy Conversion , 2011, 1203.0556.

[35]  A. Tishin,et al.  Alloys of the FeRh system as a new class of working material for magnetic refrigerators , 1992 .

[36]  V. Basso,et al.  Hysteresis and Phase Transition Kinetics in Magnetocaloric Materials , 2018 .

[37]  Vitalij K. Pecharsky,et al.  Magnetocaloric effect from indirect measurements: Magnetization and heat capacity , 1999 .

[38]  S. Fujieda,et al.  Direct measurement of magnetocaloric effects in itinerant-electron metamagnets La(FexSi1−x)13 compounds and their hydrides , 2004 .

[39]  K. S. Singwi,et al.  Resonance Absorption of Nuclear Gamma Rays and the Dynamics of Atomic Motions , 1960 .

[40]  W. Fang,et al.  Large magnetic entropy change and magnetic properties in La (Fe1-xMnx)11.7Si1.3Hy compounds , 2003 .

[41]  Brent Fultz,et al.  Vibrational thermodynamics of materials , 2010 .

[42]  M. Richter,et al.  Mechanism of the strong magnetic refrigerant performance of LaFe 13-x Si x , 2007 .

[43]  R. Mittal,et al.  Origin of negative thermal expansion in cubic ZrW2O8 revealed by high pressure inelastic neutron scattering. , 2001 .

[44]  C. P. Bean,et al.  Magnetic Disorder as a First-Order Phase Transformation , 1962 .

[45]  R. Haruki,et al.  Site-specific phonon density of states discerned using electronic states. , 2003, Physical review letters.

[46]  Kazuaki Fukamichi,et al.  Design and performance of a permanent-magnet rotary refrigerator , 2005 .

[47]  S. Fujieda,et al.  Large magnetocaloric effect in La(FexSi1−x)13 itinerant-electron metamagnetic compounds , 2002 .

[48]  O. Delaire,et al.  Adiabatic electron-phonon interaction and high-temperature thermodynamics of A15 compounds. , 2008, Physical review letters.

[49]  W. Visscher Study of lattice vibrations by resonance absorption of nuclear gamma rays , 1960 .

[50]  F. Hu,et al.  Direct measurements of magnetocaloric effect in the first-order system Lafe11.7Si1.3 , 2003 .

[51]  E. Alp,et al.  Moments in nuclear resonant inelastic x-ray scattering and their applications , 2013 .

[52]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[53]  Dario Alfè,et al.  PHON: A program to calculate phonons using the small displacement method , 2009, Comput. Phys. Commun..

[54]  W. Sturhahn Nuclear resonant spectroscopy , 2004 .

[55]  S. Gama,et al.  Analytical model to understand the colossal magnetocaloric effect , 2005 .

[56]  A. Fujita,et al.  Electronic structure, metamagnetism and thermopower of LaSiFe12 and interstitially doped LaSiFe12 , 2014, 1407.7975.

[57]  V. Basso,et al.  Modeling specific heat and entropy change in La(Fe–Mn–Si)13–H compounds , 2016 .

[58]  B. Shen,et al.  Thermal expansion coefficients of LaFe11.7Si1.3 , 2003 .

[59]  G. Grübel,et al.  ENERGY DEPENDENCE OF NUCLEAR RECOIL MEASURED WITH INCOHERENT NUCLEAR SCATTERING OF SYNCHROTRON RADIATION , 1995 .

[60]  Stefan Blügel,et al.  Ground States of Constrained Systems: Application to Cerium Impurities , 1984 .

[61]  J. Spence,et al.  Determination of the single-scattering probability distribution from plural-scattering data , 1974 .

[62]  A. Fujita,et al.  Stability of metallic, magnetic and electronic states in NaZn13-type La(FexSi1−x)13 magnetocaloric compounds , 2012 .

[63]  H. Wende,et al.  Moment‐Volume Coupling in La(Fe1−xSix)13 , 2017, 1708.08304.

[64]  T. Zhao,et al.  Influence of interstitial and substitutional atoms on the crystal structure of La(FeSi)13 , 2011 .

[65]  Christina H. Chen,et al.  Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient , 2011, Advanced materials.

[66]  E. Fawcett Magnetic Gruneisen parameters in chromium , 1989 .

[67]  O. Gutfleisch,et al.  The dynamics of spontaneous hydrogen segregation in LaFe$_{13-x}$Si$_x$H$_y$ , 2014, 1403.1808.

[68]  Häglund Fixed-spin-moment calculations on bcc and fcc iron using the generalized gradient approximation. , 1993, Physical review. B, Condensed matter.

[69]  M. Gupta,et al.  Phonons and Anomalous Thermal Expansion Behaviour in Crystalline Solids , 2017, 1711.07267.

[70]  S. I. Makarov,et al.  Local electronic and magnetic properties of pure and Mn-containing magnetocaloric LaFe13−xSix compounds inferred from Mössbauer spectroscopy and magnetometry , 2015 .

[71]  Ando,et al.  Observation of nuclear resonant scattering accompanied by phonon excitation using synchrotron radiation. , 1995, Physical review letters.

[72]  W. Wang,et al.  Magnetic entropy change in LaFe13-xSix intermetallic compounds , 2002 .

[73]  R. Röhlsberger Nuclear Condensed Matter Physics with Synchrotron Radiation: Basic Principles, Methodology and Applications , 2004 .

[74]  B. Shen,et al.  Hyperfine interactions and band structures of LaFe13−xSix intermetallic compounds with large magnetic entropy changes , 2006 .

[75]  Vitalij K. Pecharsky,et al.  Caloric effects in ferroic materials , 2018 .

[76]  Marcus,et al.  Ferromagnetic phases of bcc and fcc Fe, Co, and Ni. , 1986, Physical review. B, Condensed matter.

[77]  M. Acet,et al.  Inverse barocaloric effect in the giant magnetocaloric La-Fe-Si-Co compound. , 2011, Nature communications.

[78]  Yuanzheng Yue,et al.  Vibrational thermodynamics of Fe90Zr7B3 nanocrystalline alloy from nuclear inelastic scattering , 2010 .

[79]  D. Banerjee,et al.  Efficient Room-Temperature Cooling with Magnets , 2016 .

[80]  H. Lipkin Some simple features of the Mossbauer effect: II. Sum rules and the moments of the energy spectrum☆ , 1962 .

[81]  F. Hu,et al.  Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6 , 2001 .

[82]  Chengyong Wang,et al.  Mass production of magnetocaloric LaFeMnSiB alloys with hydrogenation , 2017 .

[83]  Konstantin P. Skokov,et al.  Systematic study of the microstructure, entropy change and adiabatic temperature change in optimized La–Fe–Si alloys , 2011 .

[84]  M. Podgorny Fixed-spin-moment method and canonical band theory , 1990 .

[85]  Michael Y. Hu Some notes on data analysis for nuclear resonant inelastic x-ray scattering , 2016 .

[86]  Karl A. Gschneidner,et al.  Magnetocaloric effect and magnetic refrigeration , 1999 .

[87]  W. Fan,et al.  Giant negative thermal expansion in NaZn13-type La(Fe, Si, Co)13 compounds. , 2013, Journal of the American Chemical Society.

[88]  Lipkin Mössbauer sum rules for use with synchrotron sources. , 1995, Physical review. B, Condensed matter.

[89]  K. G. Sandeman Magnetocaloric materials: The search for new systems , 2012, 1201.3113.

[90]  Marcus,et al.  Stoner model of ferromagnetism and total-energy band theory. , 1988, Physical review. B, Condensed matter.

[91]  P. Fournier,et al.  Advanced materials for magnetic cooling: Fundamentals and practical aspects , 2017, 2012.08176.

[92]  K. Gschneidner,et al.  Massive magnetic-field-induced structural transformation in Gd5Ge4 and the nature of the giant magnetocaloric effect. , 2003, Physical review letters.

[93]  L. Schultz,et al.  Reversible solid-state hydrogen-pump driven by magnetostructural transformation in the prototype system La(Fe,Si)13Hy , 2012 .

[94]  Y. Iijima,et al.  Giant isotropic magnetostriction of itinerant-electron metamagnetic La(Fe0.88Si0.12)13Hy compounds , 2001 .

[95]  F. Hu,et al.  Strong interplay between structure and magnetism in the giant magnetocaloric intermetallic compound LaFe11.4Si1.6: a neutron diffraction study , 2003 .

[96]  O. Delaire,et al.  Positive vibrational entropy of chemical ordering in FeV. , 2011, Physical review letters.

[97]  T. Goto,et al.  Itinerant-electron metamagnetic transition and large magnetovolume effects in La(Fe x Si 1-x ) 13 compounds , 2001 .

[98]  Y. Kawazoe,et al.  Large magnetovolume effects and band structure of itinerant-electron metamagnetic La(FexSi1-x)13 compounds , 2003 .

[99]  V. Pecharsky,et al.  Making the most of the magnetic and lattice entropy changes , 2009 .

[100]  O. Gutfleisch,et al.  Exploring La(Fe,Si)13-based magnetic refrigerants towards application , 2012 .