Optimal individual attack on BB84 quantum key distribution using single-photon two-qubit quantum logic

We propose the use of single-photon two-qubit quantum logic to physically simulate the optimal individual attack on Bennett-Brassard 1984 quantum key distribution protocol.The experimental setup does not require a quantum memory due to the physical simulation character of the proposal.

[1]  Won-Young Hwang Quantum key distribution with high loss: toward global secure communication. , 2003, Physical review letters.

[2]  Jeffrey H. Shapiro,et al.  Complete physical simulation of the entangling-probe attack on the BB84 protocol , 2007, QELS 2007.

[3]  Gilles Van Assche,et al.  Quantum cryptography and secret-key distillation , 2006 .

[4]  Marco Fiorentino,et al.  Deterministic controlled-NOT gate for single-photon two-qubit quantum logic. , 2004, Physical review letters.

[5]  Nicolas Cerf,et al.  Optical quantum cloning , 2006 .

[6]  Renato Renner,et al.  Security of quantum key distribution , 2005, Ausgezeichnete Informatikdissertationen.

[7]  James F. Dynes,et al.  Unconditionally secure one-way quantum key distribution using decoy pulses , 2007, QELS 2007.

[8]  H. Weinfurter,et al.  Entanglement-based quantum communication over 144km , 2007 .

[9]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[10]  J.H. Shapiro,et al.  Attacking quantum key distribution with single-photon two-qubit quantum logic , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[11]  Robert B. Griffiths,et al.  Two qubit copying machine for economical quantum eavesdropping , 1999 .

[12]  Dag R. Hjelme,et al.  Faked states attack on quantum cryptosystems , 2005 .

[13]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[14]  Shor,et al.  Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.

[15]  Dominic Mayers,et al.  Unconditional security in quantum cryptography , 1998, JACM.

[16]  Jeffrey H. Shapiro,et al.  Efficient generation of polarization-entangled photons in a nonlinear crystal , 2006 .

[17]  Yeshaiahu Fainman,et al.  Effect of channel imperfection on the secrecy capacity of a quantum cryptographic system , 1997 .

[18]  Hoi-Kwong Lo,et al.  A simple proof of the unconditional security of quantum key distribution , 1999, ArXiv.

[19]  M. Peev,et al.  On the optimality of individual entangling-probe attacks against BB84 quantum key distribution , 2007, 0711.1728.

[20]  R. Renner,et al.  Information-theoretic security proof for quantum-key-distribution protocols , 2005, quant-ph/0502064.

[21]  Sanders,et al.  Limitations on practical quantum cryptography , 2000, Physical review letters.

[22]  Renato Renner,et al.  Quantum cryptography with finite resources: unconditional security bound for discrete-variable protocols with one-way postprocessing. , 2007, Physical review letters.

[23]  Jeffrey H. Shapiro,et al.  Complete physical simulation of the entangling-probe attack on the BB84 protocol , 2007, 2007 Quantum Electronics and Laser Science Conference.

[24]  Gilles Brassard,et al.  Experimental Quantum Cryptography , 1990, EUROCRYPT.

[25]  Pérès,et al.  Quantum-state disturbance versus information gain: Uncertainty relations for quantum information. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[26]  Yi Zhao,et al.  Experimental quantum key distribution with decoy states. , 2006, Physical review letters.

[27]  Marco Fiorentino,et al.  Single-photon two-qubit SWAP gate for entanglement manipulation (4 pages) , 2005 .

[28]  Anders Karlsson,et al.  Security of quantum key distribution using d-level systems. , 2001, Physical review letters.