Electrospray and tandem mass spectrometry in biochemistry.

Over the last 20 years, biological MS has changed out of all recognition. This is primarily due to the development in the 1980s of 'soft ionization' methods that permit the ionization and vaporization of large, polar, and thermally labile biomolecules. These developments in ionization mode have driven the design and manufacture of smaller and cheaper mass analysers, making the mass spectrometer a routine instrument in the biochemistry laboratory today. In the present review the revolutionary 'soft ionization' methods will be discussed with particular reference to electrospray. The mass analysis of ions will be described, and the concept of tandem MS introduced. Where appropriate, examples of the application of MS in biochemistry will be provided. Although the present review will concentrate on the MS of peptides/proteins and lipids, all classes of biomolecules can be analysed, and much excellent work has been done in the fields of carbohydrate and nucleic acid biochemistry.

[1]  E. Hoffmann Tandem mass spectrometry: A primer , 1996 .

[2]  M. Karas,et al.  Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. , 1988, Analytical chemistry.

[3]  Martin Raymond Green,et al.  A combined magnetic sector–time‐of‐flight mass spectrometer for structural determination studies by tandem mass spectrometry , 1995 .

[4]  R. Cole,et al.  Some tenets pertaining to electrospray ionization mass spectrometry. , 2000, Journal of mass spectrometry : JMS.

[5]  Geoffrey Ingram Taylor,et al.  Disintegration of water drops in an electric field , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[6]  S. Summerfield,et al.  Intra-ionic interactions in electrosprayed peptide ions , 1997 .

[7]  W. Griffiths,et al.  Nano-electrospray tandem mass spectrometry for the analysis of neurosteroid sulphates. , 1999, Rapid communications in mass spectrometry : RCM.

[8]  R. Nelson,et al.  Mass determination of human immunoglobulin IgM using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. , 1994, Rapid communications in mass spectrometry : RCM.

[9]  Richard D. Smith,et al.  Small volume and low flow-rate electrospray lonization mass spectrometry of aqueous samples , 1993 .

[10]  R. Caprioli,et al.  Micro-Electrospray: Zeptomole/attomole per microliter sensitivity for peptides , 1994, Journal of the American Society for Mass Spectrometry.

[11]  Michael Barber,et al.  Fast Atom Bombardment Mass Spectrometry , 1982, Science.

[12]  G. V. Van Berkel Electrolytic deposition of metals on to the high-voltage contact in an electrospray emitter: implications for gas-phase ion formation. , 2000, Journal of mass spectrometry : JMS.

[13]  Roman A. Zubarev,et al.  Electron Capture Dissociation of Gaseous Multiply-Charged Proteins Is Favored at Disulfide Bonds and Other Sites of High Hydrogen Atom Affinity , 1999 .

[14]  B. Ganem,et al.  Observation of noncovalent enzyme-substrate and enzyme-product complexes by ion-spray mass spectrometry , 1991 .

[15]  C. Dobson,et al.  Protein subunit interactions and structural integrity of amyloidogenic transthyretins: evidence from electrospray mass spectrometry. , 1998, Journal of molecular biology.

[16]  J. Johansson,et al.  Characterisation of variant forms of prophenin: mechanistic aspects of the fragmentation of proline-rich peptides. , 2000, Rapid communications in mass spectrometry : RCM.

[17]  P. Højrup,et al.  Rapid identification of proteins by peptide-mass fingerprinting , 1993, Current Biology.

[18]  J. Langridge,et al.  Noncovalent associations of glutathione S-transferase and ligands: A study using electrospray quadrupole/time-of-flight mass spectrometry , 2000, Journal of the American Society for Mass Spectrometry.

[19]  R. Cooks,et al.  Building mass spectrometers and a philosophy of research , 1990, Journal of the American Society for Mass Spectrometry.

[20]  G. Sweetman,et al.  Mass Spectrometric Detection of Carcinogen Adducts , 1998 .

[21]  J. Lindgren,et al.  Charge Remote Fragmentation of Fatty Acid Anions in 400 eV Collisions with Xenon Atoms , 1996 .

[22]  J R Yates,et al.  Protein sequencing by tandem mass spectrometry. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[23]  M. Gross Charge-remote fragmentations: method, mechanism and applications , 1992 .

[24]  J. Hajdu,et al.  Electrospray time-of-flight mass spectrometry of the intact MS2 virus capsid , 2000 .

[25]  C. Griesinger,et al.  Observation of noncovalent complexes using laser-induced liquid beam ionization/desorption , 1996 .

[26]  Catherine Fenselau,et al.  Isotopic distributions in mass spectra of large molecules , 1983 .

[27]  T. Hunkapiller,et al.  Peptide mass maps: a highly informative approach to protein identification. , 1993, Analytical biochemistry.

[28]  F W McLafferty,et al.  Localization of labile posttranslational modifications by electron capture dissociation: the case of gamma-carboxyglutamic acid. , 1999, Analytical chemistry.

[29]  C. Watanabe,et al.  Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[30]  P. Højrup,et al.  Use of mass spectrometric molecular weight information to identify proteins in sequence databases. , 1993, Biological mass spectrometry.

[31]  K. Tomer,et al.  Location of double-bond position in unsaturated fatty acids by negative ion MS/MS , 1983 .

[32]  P. Roepstorff,et al.  MALDI-TOF mass spectrometry in protein chemistry. , 2000, EXS.

[33]  G. Gonnet,et al.  Protein identification by mass profile fingerprinting. , 1993, Biochemical and biophysical research communications.

[34]  G. J. Berkel Electrolytic deposition of metals on to the high-voltage contact in an electrospray emitter: implications for gas-phase ion formation. , 2000 .

[35]  T D Wood,et al.  Sequence tag identification of intact proteins by matching tanden mass spectral data against sequence data bases. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[36]  J. Johansson,et al.  Porcine pulmonary surfactant preparations contain the antibacterial peptide prophenin and a C‐terminal 18‐residue fragment thereof , 1999, FEBS Letters.

[37]  F. McLafferty,et al.  Electron Capture Dissociation of Multiply Charged Protein Cations. A Nonergodic Process , 1998 .

[38]  E. W. McDaniel,et al.  Electrospray Ion Source. Another Variation on the Free-Jet Theme , 1984 .

[39]  C. Costello,et al.  Tandem mass spectrometry. , 1993, Methods in molecular biology.

[40]  W. Griffiths,et al.  A comparison of fast-atom bombardment and electrospray as methods of ionization in the study of sulphated- and sulphonated-lipids by tandem mass spectrometry , 1996 .

[41]  V. Wysocki,et al.  Surface-induced dissociation: an effective tool to probe structure, energetics and fragmentation mechanisms of protonated peptides. , 1996, Journal of mass spectrometry : JMS.

[42]  E. de Hoffmann,et al.  Bile acids and conjugates identified in metabolic disorders by fast atom bombardment and tandem mass spectrometry. , 1991, Clinical chemistry.

[43]  G. Siuzdak,et al.  Nanoelectrospray mass spectrometry and precursor ion monitoring for quantitative steroid analysis and attomole sensitivity. , 1999, Analytical chemistry.

[44]  M. Gross,et al.  Fast-atom bombardment and tandem mass spectrometry of macrolide antibiotics , 1994, Journal of the American Society for Mass Spectrometry.

[45]  R. March An Introduction to Quadrupole Ion Trap Mass Spectrometry , 1997 .

[46]  K. Tomer,et al.  Fast atom bombardment combined with tandem mass spectrometry for determination of bile salts and their conjugates. , 1986, Biomedical & environmental mass spectrometry.

[47]  Christie G. Enke,et al.  Selected Ion Fragmentation with a Tandem Quadrupole Mass Spectrometer. , 1978 .

[48]  John Skilling,et al.  Disentangling electrospray spectra with maximum entropy , 1992 .

[49]  R. Caprioli,et al.  Micro-electrospray mass spectrometry: Ultra-high-sensitivity analysis of peptides and proteins , 1994, Journal of the American Society for Mass Spectrometry.

[50]  C. Zhao,et al.  Prophenin‐1, an exceptionally proline‐rich antimicrobial peptide from porcine leukocytes , 1995, FEBS letters.

[51]  B. Spengler Post-source decay analysis in matrix-assisted laser desorption/ionization mass spectrometry of biomolecules† , 1997 .

[52]  I. Csizmadia,et al.  The structure and fragmentation of Bn (n≥3) ions in peptide spectra , 1996, Journal of the American Society for Mass Spectrometry.

[53]  Richard D. Smith,et al.  The observation of non‐covalent interactions in solution by electrospray ionization mass spectrometry: Promise, pitfalls and prognosis , 1993 .

[54]  F. W. Aston Mass-spectra and Isotopes , 1942 .

[55]  S. Gaskell Electrospray: Principles and Practice , 1997 .

[56]  R. C. Mobley,et al.  Molecular Beams of Macroions , 1968 .

[57]  J. Kerwin,et al.  Identification of fatty acids by electrospray mass spectrometry and tandem mass spectrometry. , 1996, Journal of mass spectrometry : JMS.

[58]  M. Hamberg,et al.  Isolation and structure of a new galactolipid from oat seeds , 1998, Lipids.

[59]  G. Otting,et al.  Pathway of chymotrypsin evolution suggested by the structure of the FMN-binding protein from Desulfovibrio vulgaris (Miyazaki F) , 1997, Nature Structural Biology.

[60]  R. Cooks,et al.  Surface-Induced dissociation from a liquid surface , 1993, Journal of the American Society for Mass Spectrometry.

[61]  A. Shevchenko,et al.  Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry , 1996, Nature.

[62]  T. Perlmann,et al.  Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. , 2000, Science.

[63]  Peter R. Baker,et al.  Role of accurate mass measurement (+/- 10 ppm) in protein identification strategies employing MS or MS/MS and database searching. , 1999, Analytical chemistry.

[64]  M. Wilm,et al.  Error-tolerant identification of peptides in sequence databases by peptide sequence tags. , 1994, Analytical chemistry.

[65]  C. Robinson,et al.  Detection of the Intact GroEL Chaperonin Assembly by Mass Spectrometry , 1999 .

[66]  R. P. Morgan,et al.  The MM-ZAB-2F double-focussing mass spectrometer and mike spectrometer , 1978 .

[67]  J. Yates,et al.  An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database , 1994, Journal of the American Society for Mass Spectrometry.

[68]  J. Yates Mass spectrometry and the age of the proteome. , 1998, Journal of mass spectrometry : JMS.

[69]  E. Hoffmann,et al.  Fast-atom bombardment mass spectrometry and low energy collision-induced tandem mass spectrometry of tauroconjugated bile acid anions , 1995, Journal of the American Society for Mass Spectrometry.

[70]  R. Bateman,et al.  Time-of-flight mass analysis of high-energy collision-induced dissociation fragment ions , 1992 .

[71]  D. Stevenson Mass Spectrometry and its Applications to Organic Chemistry. , 1961 .

[72]  M. Kosevich,et al.  Fast atom bombardment mass spectra of thiotepa , 1991 .

[73]  J. Cottrell,et al.  Continuous-flow fast atom bombardment mass spectrometry. , 1987, Journal of chromatography.

[74]  Jeanette Adams Charge‐remote fragmentations: Analytical applications and fundamental studies , 1990 .

[75]  P. Roepstorff,et al.  Proposal for a common nomenclature for sequence ions in mass spectra of peptides. , 1984, Biomedical mass spectrometry.

[76]  H. Witkowska,et al.  Intact noncovalent dimer of estrogen receptor ligand-binding domain can be detected by electrospray ionization mass spectrometry , 1996, Steroids.

[77]  P. Schnier,et al.  Blackbody infrared radiative dissociation of bradykinin and its analogues: energetics, dynamics, and evidence for salt-bridge structures in the gas phase. , 1996, Journal of the American Chemical Society.

[78]  K. Tomer,et al.  Fast atom bombardment and tandem mass spectrometry for structure determination: remote site fragmentation of steroid conjugates and bile salts. , 1988, Biomedical & environmental mass spectrometry.

[79]  J. Loo Observation of large subunit protein complexes by electrospray ionization mass spectrometry , 1995 .

[80]  C. G. Edmonds,et al.  Collisionally activated dissociation and tandem mass spectrometry of intact hemoglobin beta-chain variant proteins with electrospray ionization. , 1993, Biological mass spectrometry.

[81]  J. V. Iribarne,et al.  Field induced ion evaporation from liquid surfaces at atmospheric pressure , 1979 .

[82]  C. Nuckolls,et al.  Characterization of recombinant human plasma lecithin: cholesterol acyltransferase (LCAT): N-linked carbohydrate structures and catalytic properties. , 1998, Journal of lipid research.

[83]  P. Kebarle,et al.  FROM IONS IN SOLUTION TO IONS IN THE GAS PHASE , 1993 .

[84]  Kermit K. Murray,et al.  DNA sequencing by mass spectrometry. , 1996, Journal of mass spectrometry : JMS.

[85]  C. Enke,et al.  Importance of gas-phase proton affinities in determining the electrospray ionization response for analytes and solvents. , 2000, Journal of mass spectrometry : JMS.

[86]  C. G. Edmonds,et al.  Tandem mass spectrometry of very large molecules. 2. Dissociation of multiply charged proline-containing proteins from electrospray ionization. , 1993, Analytical chemistry.

[87]  A. G. Harrison,et al.  Ion chemistry of protonated aspartic acid derivatives , 1998 .

[88]  M. Guilhaus,et al.  Orthogonal acceleration time-of-flight mass spectrometry. , 2000, Mass spectrometry reviews.

[89]  V. Wysocki,et al.  Charge-remote fragmentation of gas-phase ions: mechanistic and energetic considerations in the dissociation of long-chain functionalized alkanes and alkenes , 1991 .

[90]  A. G. Harrison,et al.  Pathways to Immonium Ions in the Fragmentation of Protonated Peptides , 1997 .

[91]  W. Griffiths,et al.  Analysis of bile acids and bile alcohols in urine by capillary column liquid chromatography-mass spectrometry using fast atom bombardment or electrospray ionization and collision-induced dissociation. , 1997, Biomedical chromatography : BMC.

[92]  A. Podtelejnikov,et al.  Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[93]  N. Yasuoka,et al.  Crystallization and preliminary crystallographic studies of FMN-binding protein from Desulfovibrio vulgaris miyazaki F. , 1999, Acta crystallographica. Section D, Biological crystallography.

[94]  Gamero-Castano,et al.  Kinetics of small ion evaporation from the charge and mass distribution of multiply charged clusters in electrosprays , 2000, Journal of mass spectrometry : JMS.

[95]  A. Tyler,et al.  Exact mass measurement of polar organic molecules at low resolution using electrospray ionization and a quadrupole mass spectrometer. , 1996, Analytical chemistry.

[96]  P. Kebarle,et al.  Effect of the conductivity of the electrosprayed solution on the electrospray current. Factors determining analyte sensitivity in electrospray mass spectrometry , 1991 .

[97]  Stephen A. Martin,et al.  Collision-induced fragmentation of (M + H)+ ions of peptides. Side chain specific sequence ions , 1988 .

[98]  M. Wilm,et al.  Electrospray and Taylor-Cone theory, Dole's beam of macromolecules at last? , 1994 .

[99]  M. Mann,et al.  Electrospray Ionization for Mass Spectrometry of Large Biomolecules , 1990 .

[100]  A. Marshall,et al.  Fourier Transform Ion Cyclotron Resonance Spectroscopy , 1974 .

[101]  P. Kebarle,et al.  Dependence of ion intensity in electrospray mass spectrometry on the concentration of the analytes in the electrosprayed solution , 1993 .

[102]  J. V. Iribarne,et al.  On the evaporation of small ions from charged droplets , 1976 .

[103]  A. Shevchenko,et al.  Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. , 1996, Analytical chemistry.

[104]  I. Papayannopoulos,et al.  The interpretation of collision‐induced dissociation tandem mass spectra of peptides , 1996 .

[105]  J. Beynon,et al.  Qualitative Analysis of Organic Compounds by Mass Spectrometry , 1954, Nature.

[106]  Vicki H. Wysocki,et al.  Influence of Secondary Structure on the Fragmentation of Protonated Peptides , 1999 .

[107]  J. Gustafsson,et al.  Ring opening of benzo[a]pyrene in the germ-free rat is a novel pathway for formation of potentially genotoxic metabolites. , 2000, Biochemistry.

[108]  R. Edmondson,et al.  High-resolution Mass Spectrometry and Accurate Mass Measurements with Emphasis on the Characterization of Peptides and Proteins by Matrix-assisted Laser Desorption/Ionization Time-of-flight Mass Spectrometry , 1997 .

[109]  J. Cottrell,et al.  Protein identification by peptide mass fingerprinting. , 1994, Peptide research.

[110]  A. Dell,et al.  High sensitivity collisionally-activated decomposition tandem mass spectrometry on a novel quadrupole/orthogonal-acceleration time-of-flight mass spectrometer. , 1996, Rapid communications in mass spectrometry : RCM.

[111]  R S Johnson,et al.  Novel fragmentation process of peptides by collision-induced decomposition in a tandem mass spectrometer: differentiation of leucine and isoleucine. , 1987, Analytical chemistry.

[112]  R. Aebersold,et al.  Mass spectrometric approaches for the identification of gel‐separated proteins , 1995, Electrophoresis.

[113]  P. Kebarle A brief overview of the present status of the mechanisms involved in electrospray mass spectrometry. , 2000, Journal of mass spectrometry : JMS.

[114]  C. Wesdemiotis,et al.  Amide bond dissociation in protonated peptides. Structures of the N-terminal ionic and neutral fragments , 1997 .

[115]  F. McLafferty,et al.  Collisional activation spectra of organic ions , 1995 .

[116]  K. Jennings Collision-induced decompositions of aromatic molecular ions , 1968 .

[117]  Vicki H. Wysocki,et al.  Influence of Peptide Composition, Gas-Phase Basicity, and Chemical Modification on Fragmentation Efficiency: Evidence for the Mobile Proton Model , 1996 .

[118]  I. Csizmadia,et al.  Why Are B ions stable species in peptide spectra? , 1995, Journal of the American Society for Mass Spectrometry.

[119]  J. Fenn,et al.  Negative ion production with the electrospray ion source , 1984 .

[120]  B. Pramanik,et al.  Electrospray ionization mass spectrometry for the study of non-covalent complexes: an emerging technology. , 1998, Journal of mass spectrometry : JMS.

[121]  A. Dell,et al.  The Cytoplasmic F-box Binding Protein SKP1 Contains a Novel Pentasaccharide Linked to Hydroxyproline inDictyostelium * , 1998, The Journal of Biological Chemistry.

[122]  Gérard Hopfgartner,et al.  Exact mass measurement of product ions for the structural elucidation of drug metabolites with a tandem quadrupole orthogonal-acceleration time-of-flight mass spectrometer , 1999 .