Numerical study of cluster formation in a gas–particle circulating fluidized bed

Abstract Simulations with two-way coupling are performed for two-dimensional gas–solid flow in a circulating fluidized bed with a total solids concentration of 3% in the riser. The motion of particles is treated by a Lagrangian approach, and particles are assumed to interact through binary, instantaneous, non-frontal, and inelastic collisions with friction. The model for the interstitial gas phase is based on the Navier–Stokes equations for two-phase flow with fluid turbulence calculated by using LES. Several porosity functions exist in the literature relating the drag force for a particle in a cloud to the drag force on an isolated particle. We have studied the influences of this porosity function, observing large differences in the local flow structure. The fluctuating gas–solid motion has been investigated showing a strong anisotropic flow behaviour, which is similar to experimental findings. The instabilities in these flows are strongly linked to the non-linear drag function due to the group effect of particles in a cloud. The collision parameters have been found to have an important influence on the cluster structures.