From Low-Distortion Norm Embeddings to Explicit Uncertainty Relations and Efficient Information Locking

The existence of quantum uncertainty relations is the essential reason that some classically unrealizable cryptographic primitives become realizable when quantum communication is allowed. One operational manifestation of these uncertainty relations is a purely quantum effect referred to as information locking [DiVincenzo et al. 2004]. A locking scheme can be viewed as a cryptographic protocol in which a uniformly random n-bit message is encoded in a quantum system using a classical key of size much smaller than n. Without the key, no measurement of this quantum state can extract more than a negligible amount of information about the message, in which case the message is said to be “locked”. Furthermore, knowing the key, it is possible to recover, that is “unlock”, the message. In this article, we make the following contributions by exploiting a connection between uncertainty relations and low-distortion embeddings of Euclidean spaces into slightly larger spaces endowed with the ℓ1 norm. We introduce the notion of a metric uncertainty relation and connect it to low-distortion embeddings of ℓ2 into ℓ1. A metric uncertainty relation also implies an entropic uncertainty relation. We prove that random bases satisfy uncertainty relations with a stronger definition and better parameters than previously known. Our proof is also considerably simpler than earlier proofs. We then apply this result to show the existence of locking schemes with key size independent of the message length. Moreover, we give efficient constructions of bases satisfying metric uncertainty relations. The bases defining these metric uncertainty relations are computable by quantum circuits of almost linear size. This leads to the first explicit construction of a strong information locking scheme. These constructions are obtained by adapting an explicit norm embedding due to Indyk [2007] and an extractor construction of Guruswami et al. [2009]. We apply our metric uncertainty relations to exhibit communication protocols that perform equality testing of n-qubit states. We prove that this task can be performed by a single message protocol using O(log2 n) qubits and n bits of communication, where the computation of the sender is efficient.

[1]  Claude E. Shannon,et al.  A Mathematical Theory of Communications , 1948 .

[2]  A. Harrow,et al.  Superdense coding of quantum states. , 2003, Physical review letters.

[3]  P. Hayden,et al.  Possibility, impossibility, and cheat sensitivity of quantum-bit string commitment , 2005, quant-ph/0504078.

[4]  Piotr Indyk,et al.  Uncertainty principles, extractors, and explicit embeddings of l2 into l1 , 2007, STOC '07.

[5]  Frédéric Dupuis,et al.  Quantum Entropic Security and Approximate Quantum Encryption , 2007, IEEE Transactions on Information Theory.

[6]  Dan Suciu,et al.  Journal of the ACM , 2006 .

[7]  I. Bialynicki-Birula,et al.  Uncertainty relations for information entropy in wave mechanics , 1975 .

[8]  S. Szarek Convexity, complexity, and high dimensions , 2006 .

[9]  Shor,et al.  Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.

[10]  Victor Shoup,et al.  Searching for primitive roots in finite fields , 1990, STOC '90.

[11]  Ivan Damgård,et al.  A Tight High-Order Entropic Quantum Uncertainty Relation with Applications , 2006, CRYPTO.

[12]  Andreas J. Winter,et al.  Counterexamples to the Maximal p-Norm Multiplicativity Conjecture for all p > 1 , 2008, ArXiv.

[13]  K. Ball An elementary introduction to modern convex geometry, in flavors of geometry , 1997 .

[14]  A. Winter,et al.  Aspects of Generic Entanglement , 2004, quant-ph/0407049.

[15]  I. D. Ivanović An inequality for the sum of entropies of unbiased quantum measurements , 1992 .

[16]  Guillaume Aubrun,et al.  Hastings’s Additivity Counterexample via Dvoretzky’s Theorem , 2010, 1003.4925.

[17]  M. Hastings Superadditivity of communication capacity using entangled inputs , 2009 .

[18]  Jeroen van de Graaf,et al.  Cryptographic Distinguishability Measures for Quantum-Mechanical States , 1997, IEEE Trans. Inf. Theory.

[19]  A. Winter,et al.  Randomizing Quantum States: Constructions and Applications , 2003, quant-ph/0307104.

[20]  Rudolf Ahlswede,et al.  Identification via channels , 1989, IEEE Trans. Inf. Theory.

[21]  James R. Lee,et al.  Almost Euclidean subspaces of e N 1 via expander codes , 2008, SODA 2008.

[22]  Simon Pierre Desrosiers,et al.  Entropic security in quantum cryptography , 2007, Quantum Inf. Process..

[23]  H. P. Robertson The Uncertainty Principle , 1929 .

[24]  P. Hayden,et al.  Security of quantum bit string commitment depends on the information measure. , 2006, Physical review letters.

[25]  W. Wootters,et al.  Optimal state-determination by mutually unbiased measurements , 1989 .

[26]  Oded Goldreich,et al.  Computational complexity: a conceptual perspective , 2008, SIGA.

[27]  G. Pisier ASYMPTOTIC THEORY OF FINITE DIMENSIONAL NORMED SPACES (Lecture Notes in Mathematics 1200) , 1987 .

[28]  Ivan Damgård,et al.  Cryptography in the bounded quantum-storage model , 2005, IEEE Information Theory Workshop on Theory and Practice in Information-Theoretic Security, 2005..

[29]  Fr'ed'eric Dupuis,et al.  Locking classical information , 2010 .

[30]  Martin Rötteler,et al.  Limitations of quantum coset states for graph isomorphism , 2006, STOC '06.

[31]  M. Fannes A continuity property of the entropy density for spin lattice systems , 1973 .

[32]  Piotr Indyk,et al.  Stable distributions, pseudorandom generators, embeddings, and data stream computation , 2006, JACM.

[33]  T. Rudolph,et al.  Degrees of concealment and bindingness in quantum bit commitment protocols , 2001, quant-ph/0106019.

[34]  Andreas J. Winter,et al.  The Fidelity Alternative and Quantum Measurement Simulation , 2010, ArXiv.

[35]  Victor Shoup,et al.  New algorithms for finding irreducible polynomials over finite fields , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[36]  F. Dupuis The decoupling approach to quantum information theory , 2010, 1004.1641.

[37]  Tsuyoshi Ito,et al.  Quantum fingerprints that keep secrets , 2010, Quantum Inf. Comput..

[38]  V. Milman New proof of the theorem of A. Dvoretzky on intersections of convex bodies , 1971 .

[39]  G. Pisier The volume of convex bodies and Banach space geometry , 1989 .

[40]  Ivan Damgård,et al.  A Quantum Cipher with Near Optimal Key-Recycling , 2005, CRYPTO.

[41]  Krishnamurthy Dvijotham,et al.  A nullspace analysis of the nuclear norm heuristic for rank minimization , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[42]  Andris Ambainis,et al.  Private quantum channels , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[43]  Hoi-Kwong Lo,et al.  Is Quantum Bit Commitment Really Possible? , 1996, ArXiv.

[44]  David Zuckerman,et al.  Randomness-optimal oblivious sampling , 1997, Random Struct. Algorithms.

[45]  Ran Raz,et al.  Extracting all the randomness and reducing the error in Trevisan's extractors , 1999, STOC '99.

[46]  A. Winter,et al.  Entropic uncertainty relations—a survey , 2009, 0907.3704.

[47]  V. Shoup Searching for primitive roots in finite fields , 1990, Symposium on the Theory of Computing.

[48]  K. Audenaert A sharp continuity estimate for the von Neumann entropy , 2006, quant-ph/0610146.

[49]  R. Renner,et al.  Uncertainty relation for smooth entropies. , 2010, Physical review letters.

[50]  K. Ball An Elementary Introduction to Modern Convex Geometry , 1997 .

[51]  Piotr Indyk,et al.  Almost-Euclidean Subspaces of l1N\ell_1^N via Tensor Products: A Simple Approach to Randomness Reduction , 2010, APPROX-RANDOM.

[52]  Salil P. Vadhan,et al.  The unified theory of pseudorandomness: guest column , 2007, SIGA.

[53]  S. Wehner,et al.  Entropic uncertainty relations and locking: tight bounds for mutually unbiased bases , 2006, quant-ph/0606244.

[54]  Karol Horodecki,et al.  Locking entanglement with a single qubit. , 2005, Physical review letters.

[55]  J. Davenport Editor , 1960 .

[56]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[57]  W. Heisenberg Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik , 1927 .

[58]  M. Horodecki,et al.  Locking classical correlations in quantum States. , 2003, Physical review letters.

[59]  Andris Ambainis,et al.  Small Pseudo-random Families of Matrices: Derandomizing Approximate Quantum Encryption , 2004, APPROX-RANDOM.

[60]  Avi Wigderson,et al.  Tiny Families of Functions with Random Properties: A Quality-Size Trade-off for Hashing , 1997, Electron. Colloquium Comput. Complex..

[61]  T. Figiel,et al.  The dimension of almost spherical sections of convex bodies , 1976 .

[62]  Yevgeniy Dodis,et al.  Entropic Security and the Encryption of High Entropy Messages , 2005, TCC.

[63]  R. Cleve,et al.  Quantum fingerprinting. , 2001, Physical review letters.

[64]  V. Shoup New algorithms for finding irreducible polynomials over finite fields , 1990 .

[65]  Jürg Wullschleger,et al.  Unconditional Security From Noisy Quantum Storage , 2009, IEEE Transactions on Information Theory.

[66]  Michal Horodecki,et al.  How to reuse a one-time pad and other notes on authentication encryption and protection of quantum information , 2003, ArXiv.

[67]  Mario Berta,et al.  Quantum to Classical Randomness Extractors , 2011, IEEE Transactions on Information Theory.

[68]  Alexander Russell,et al.  How to fool an unbounded adversary with a short key , 2002, IEEE Transactions on Information Theory.

[69]  R. Gregory Taylor,et al.  Modern computer algebra , 2002, SIGA.

[70]  Ivan Damgård,et al.  On the Key-Uncertainty of Quantum Ciphers and the Computational Security of One-Way Quantum Transmission , 2004, EUROCRYPT.

[71]  Andreas J. Winter Quantum and classical message identification via quantum channels , 2005, Quantum Inf. Comput..

[72]  Andreas J. Winter,et al.  Weak Decoupling Duality and Quantum Identification , 2010, IEEE Transactions on Information Theory.

[73]  Oded Goldreich,et al.  Tiny Families of Functions with Random Properties: A Quality-Size Trade-off for Hashing (Preliminary Version) , 1997, STOC 1994.

[74]  A. Winter,et al.  Monogamy of quantum entanglement and other correlations , 2003, quant-ph/0310037.

[75]  Jorge Sánchez,et al.  Entropic uncertainty and certainty relations for complementary observables , 1993 .

[76]  Robert W. Heath,et al.  On quasi-orthogonal signatures for CDMA systems , 2006, IEEE Transactions on Information Theory.

[77]  Leonid A. Levin,et al.  Pseudo-random generation from one-way functions , 1989, STOC '89.

[78]  Joel A. Tropp,et al.  Topics in sparse approximation , 2004 .

[79]  Jaikumar Radhakrishnan,et al.  Random Measurement Bases, Quantum State Distinction and Applications to the Hidden Subgroup Problem , 2005, 21st Annual IEEE Conference on Computational Complexity (CCC'06).

[80]  Christoph Dankert,et al.  Exact and approximate unitary 2-designs and their application to fidelity estimation , 2009 .

[81]  Maassen,et al.  Generalized entropic uncertainty relations. , 1988, Physical review letters.

[82]  Dominic Mayers Unconditionally secure quantum bit commitment is impossible , 1997 .

[83]  Jiri Matousek,et al.  Lectures on discrete geometry , 2002, Graduate texts in mathematics.

[84]  Debbie W. Leung A survey on locking of bipartite correlations , 2009 .

[85]  M. Murty Ramanujan Graphs , 1965 .

[86]  Avi Wigderson,et al.  Entropy waves, the zig-zag graph product, and new constant-degree expanders and extractors , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[87]  A. Razborov Communication Complexity , 2011 .

[88]  Ueli Maurer,et al.  Small accessible quantum information does not imply security. , 2007, Physical review letters.

[89]  Andris Ambainis Limits on entropic uncertainty relations , 2010, Quantum Inf. Comput..

[90]  V. Milman,et al.  Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .

[91]  S. Szarek,et al.  Almost-Euclidean Subspaces of 1 N via Tensor Products : A Simple Approach to Randomness Reduction , 2010 .

[92]  Guillaume Aubrun,et al.  Non-additivity of Renyi entropy and Dvoretzky's Theorem , 2009, 0910.1189.

[93]  Eyal Kushilevitz,et al.  Communication Complexity: Index of Notation , 1996 .

[94]  D. Deutsch Uncertainty in Quantum Measurements , 1983 .

[95]  M. Ledoux The concentration of measure phenomenon , 2001 .

[96]  A. Ambainis Limits on entropic uncertainty relations for 3 and more MUBs , 2009, 0909.3720.

[97]  Piotr Indyk,et al.  A simple construction of almost-Euclidean subspaces of ℓ1N via tensor products , 2010, ArXiv.

[98]  L. Fortnow,et al.  Recent Developments in Explicit Constructions of Extractors , 2002, Bull. EATCS.

[99]  Enkatesan G Uruswami Unbalanced expanders and randomness extractors from Parvaresh-Vardy codes , 2008 .

[100]  Marco Tomamichel,et al.  Tight finite-key analysis for quantum cryptography , 2011, Nature Communications.

[101]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..