The impact of human expert visual inspection on the discovery of strong gravitational lenses
暂无分享,去创建一个
F. Courbin | R. Ogando | J. Diego | T. Collett | E. Buckley-Geer | K. Glazebrook | Crescenzo Tortora | K. Rojas | M. Millon | S. Birrer | J. Chan | A. Niemiec | R. Cabanac | A. Verma | S. Dye | R. Joseph | G. Mahler | R. Cabanac | S. Schuldt | M. Magee | Yue Pan | T. Daylan | Jorge Mastache | L. D. L. Bella | A. Melo | J. Bromley | C. Cornen | C. Macmillan | E. Savary | T. Verdugo | Michael N. Martinez | Dan Ryczanowski | Joshua Wilde | M. Wiesner | Dan Ballard | N. Jackson | R. Cañameras | F. Gentile | Alexander Fritz | L. A. Urena-L'opez | G. Despali | Benjamin Cl'ement | J. Maresca | Desiree M. Williams | A. Herle | J. O'Donnell | Birendra Dhanasingham | Jimena Gonz'alez | Javier A. Acevedo Barroso | Filipe G'ois-Silva | Gabriel Valim Calccada | Isaac Sierra | Micaele V. Cavalcante-Gomes | Aleksandra Grudskaia | Eric Paic | Raoul Cañameras | A. Fritz | J. A. A. Barroso | E. Paic | Devon Williams
[1] Wei Zheng,et al. A Census of Optically Dark Massive Galaxies in the Early Universe from Magnification by Lensing Galaxy Clusters , 2021, The Astrophysical Journal.
[2] A. K. Qin,et al. Exploring the interpretability of deep neural networks used for gravitational lens finding with a sensitivity probe , 2021, Astron. Comput..
[3] F. Courbin,et al. Strong lensing in UNIONS: Toward a pipeline from discovery to modeling , 2021, Astronomy & Astrophysics.
[4] F. Courbin,et al. Search of strong lens systems in the Dark Energy Survey using convolutional neural networks , 2021, Astronomy & Astrophysics.
[5] Sebastian Wagner-Carena,et al. lenstronomy II: A gravitational lensing software ecosystem , 2021, J. Open Source Softw..
[6] T. Treu,et al. TDCOSMO. III. Dark matter substructure meets dark energy. The effects of (sub)halos on strong-lensing measurements of H 0 , 2020, 2007.01308.
[7] L. Leal-Taixé,et al. HOLISMOKES , 2020, Astronomy & Astrophysics.
[8] Stefan Hilbert,et al. H0LiCOW – XIII. A 2.4 per cent measurement of H0 from lensed quasars: 5.3σ tension between early- and late-Universe probes , 2019, Monthly Notices of the Royal Astronomical Society.
[9] A. K. Qin,et al. An Extended Catalog of Galaxy–Galaxy Strong Gravitational Lenses Discovered in DES Using Convolutional Neural Networks , 2019, The Astrophysical Journal Supplement Series.
[10] C. Heymans,et al. LinKS: discovering galaxy-scale strong lenses in the Kilo-Degree Survey using convolutional neural networks , 2018, Monthly Notices of the Royal Astronomical Society.
[11] A. K. Qin,et al. Finding high-redshift strong lenses in DES using convolutional neural networks , 2018, Monthly Notices of the Royal Astronomical Society.
[12] Adam Amara,et al. lenstronomy: Multi-purpose gravitational lens modelling software package , 2018, Physics of the Dark Universe.
[13] G. Brammer,et al. Thirty-fold: Extreme Gravitational Lensing of a Quiescent Galaxy at z = 1.6 , 2017, 1802.00133.
[14] A. K. Inoue,et al. The Hyper Suprime-Cam SSP Survey: Overview and Survey Design , 2017, 1704.05858.
[15] Karl Glazebrook,et al. Finding strong lenses in CFHTLS using convolutional neural networks , 2017, 1704.02744.
[16] Nan Li,et al. Automated Lensing Learner: Automated Strong Lensing Identification with a Computer Vision Technique , 2017, The Astrophysical Journal.
[17] Research Center for the Early Universe,et al. Survey of Gravitationally-lensed Objects in HSC Imaging (SuGOHI). I. Automatic search for galaxy-scale strong lenses , 2017, 1704.01585.
[18] B. Póczos,et al. CMU DeepLens: deep learning for automatic image-based galaxy–galaxy strong lens finding , 2017, Monthly Notices of the Royal Astronomical Society.
[19] N. R. Napolitano,et al. Finding strong gravitational lenses in the Kilo Degree Survey with Convolutional Neural Networks , 2017, 1702.07675.
[20] C. Fassnacht,et al. Probing dark matter substructure in the gravitational lens HE 0435-1223 with the WFC3 grism , 2017, 1701.05188.
[21] A. Bolton,et al. THE BOSS EMISSION-LINE LENS SURVEY. IV. SMOOTH LENS MODELS FOR THE BELLS GALLERY SAMPLE , 2016, 1608.08707.
[22] G. Meylan,et al. H0LiCOW - V. New COSMOGRAIL time delays of HE 0435-1223: H0 to 3.8 per cent precision from strong lensing in a flat ΛCDM model , 2016, 1607.01790.
[23] B. Robertson,et al. Spectroscopic detection of C iv λ1548 in a galaxy at z = 7.045: implications for the ionizing spectra of reionization-era galaxies , 2015, 1504.06881.
[24] Edwin Simpson,et al. Space Warps – I. Crowdsourcing the discovery of gravitational lenses , 2015, 1504.06148.
[25] M. Auger,et al. Cosmological constraints from the double source plane lens SDSSJ0946+1006 , 2014, 1403.5278.
[26] J. Hjorth,et al. Gravitationally lensed galaxies at 2 < z < 3.5: direct abundance measurements of Ly α emitters , 2012, 1209.0775.
[27] A. Bolton,et al. Detection of a dark substructure through gravitational imaging , 2009, 0910.0760.
[28] A. Bolton,et al. Lensing Probabilities for Spectroscopically Selected Galaxy-Galaxy Strong Lenses , 2008, 0803.2234.
[29] D. Calzetti,et al. The COSMOS Survey: Hubble Space Telescope Advanced Camera for Surveys Observations and Data Processing , 2007, astro-ph/0703095.
[30] Cea,et al. Weak Gravitational Lensing with COSMOS: Galaxy Selection and Shape Measurements , 2007, astro-ph/0702359.
[31] D. Calzetti,et al. COSMOS: Hubble Space Telescope Observations , 2006, astro-ph/0612306.
[32] J.Lee,et al. THE DARK ENERGY CAMERA , 2004, The Dark Energy Survey.
[33] E. Turner,et al. Strong Gravitational Lensing Time Delay Statistics and the Density Profile of Dark Halos , 2001, astro-ph/0112119.