The impact of human expert visual inspection on the discovery of strong gravitational lenses

We investigate the ability of human ‘expert’ classifiers to identify strong gravitational lens candidates in Dark Energy Survey like imaging. We recruited a total of 55 people that completed more than 25 per cent of the project. During the classification task, we present to the participants 1489 images. The sample contains a variety of data including lens simulations, real lenses, non-lens examples, and unlabelled data. We find that experts are extremely good at finding bright, well-resolved Einstein rings, while arcs with g-band signal to noise less than ∼25 or Einstein radii less than ∼1.2 times the seeing are rarely recovered. Very few non-lenses are scored highly. There is substantial variation in the performance of individual classifiers, but they do not appear to depend on the classifier’s experience, confidence or academic position. These variations can be mitigated with a team of 6 or more independent classifiers. Our results give confidence that humans are a reliable pruning step for lens candidates, providing pure and quantifiably complete samples for follow-up studies.

[1]  Wei Zheng,et al.  A Census of Optically Dark Massive Galaxies in the Early Universe from Magnification by Lensing Galaxy Clusters , 2021, The Astrophysical Journal.

[2]  A. K. Qin,et al.  Exploring the interpretability of deep neural networks used for gravitational lens finding with a sensitivity probe , 2021, Astron. Comput..

[3]  F. Courbin,et al.  Strong lensing in UNIONS: Toward a pipeline from discovery to modeling , 2021, Astronomy & Astrophysics.

[4]  F. Courbin,et al.  Search of strong lens systems in the Dark Energy Survey using convolutional neural networks , 2021, Astronomy & Astrophysics.

[5]  Sebastian Wagner-Carena,et al.  lenstronomy II: A gravitational lensing software ecosystem , 2021, J. Open Source Softw..

[6]  T. Treu,et al.  TDCOSMO. III. Dark matter substructure meets dark energy. The effects of (sub)halos on strong-lensing measurements of H 0 , 2020, 2007.01308.

[7]  L. Leal-Taixé,et al.  HOLISMOKES , 2020, Astronomy & Astrophysics.

[8]  Stefan Hilbert,et al.  H0LiCOW – XIII. A 2.4 per cent measurement of H0 from lensed quasars: 5.3σ tension between early- and late-Universe probes , 2019, Monthly Notices of the Royal Astronomical Society.

[9]  A. K. Qin,et al.  An Extended Catalog of Galaxy–Galaxy Strong Gravitational Lenses Discovered in DES Using Convolutional Neural Networks , 2019, The Astrophysical Journal Supplement Series.

[10]  C. Heymans,et al.  LinKS: discovering galaxy-scale strong lenses in the Kilo-Degree Survey using convolutional neural networks , 2018, Monthly Notices of the Royal Astronomical Society.

[11]  A. K. Qin,et al.  Finding high-redshift strong lenses in DES using convolutional neural networks , 2018, Monthly Notices of the Royal Astronomical Society.

[12]  Adam Amara,et al.  lenstronomy: Multi-purpose gravitational lens modelling software package , 2018, Physics of the Dark Universe.

[13]  G. Brammer,et al.  Thirty-fold: Extreme Gravitational Lensing of a Quiescent Galaxy at z = 1.6 , 2017, 1802.00133.

[14]  A. K. Inoue,et al.  The Hyper Suprime-Cam SSP Survey: Overview and Survey Design , 2017, 1704.05858.

[15]  Karl Glazebrook,et al.  Finding strong lenses in CFHTLS using convolutional neural networks , 2017, 1704.02744.

[16]  Nan Li,et al.  Automated Lensing Learner: Automated Strong Lensing Identification with a Computer Vision Technique , 2017, The Astrophysical Journal.

[17]  Research Center for the Early Universe,et al.  Survey of Gravitationally-lensed Objects in HSC Imaging (SuGOHI). I. Automatic search for galaxy-scale strong lenses , 2017, 1704.01585.

[18]  B. Póczos,et al.  CMU DeepLens: deep learning for automatic image-based galaxy–galaxy strong lens finding , 2017, Monthly Notices of the Royal Astronomical Society.

[19]  N. R. Napolitano,et al.  Finding strong gravitational lenses in the Kilo Degree Survey with Convolutional Neural Networks , 2017, 1702.07675.

[20]  C. Fassnacht,et al.  Probing dark matter substructure in the gravitational lens HE 0435-1223 with the WFC3 grism , 2017, 1701.05188.

[21]  A. Bolton,et al.  THE BOSS EMISSION-LINE LENS SURVEY. IV. SMOOTH LENS MODELS FOR THE BELLS GALLERY SAMPLE , 2016, 1608.08707.

[22]  G. Meylan,et al.  H0LiCOW - V. New COSMOGRAIL time delays of HE 0435-1223: H0 to 3.8 per cent precision from strong lensing in a flat ΛCDM model , 2016, 1607.01790.

[23]  B. Robertson,et al.  Spectroscopic detection of C iv λ1548 in a galaxy at z = 7.045: implications for the ionizing spectra of reionization-era galaxies , 2015, 1504.06881.

[24]  Edwin Simpson,et al.  Space Warps – I. Crowdsourcing the discovery of gravitational lenses , 2015, 1504.06148.

[25]  M. Auger,et al.  Cosmological constraints from the double source plane lens SDSSJ0946+1006 , 2014, 1403.5278.

[26]  J. Hjorth,et al.  Gravitationally lensed galaxies at 2 < z < 3.5: direct abundance measurements of Ly α emitters , 2012, 1209.0775.

[27]  A. Bolton,et al.  Detection of a dark substructure through gravitational imaging , 2009, 0910.0760.

[28]  A. Bolton,et al.  Lensing Probabilities for Spectroscopically Selected Galaxy-Galaxy Strong Lenses , 2008, 0803.2234.

[29]  D. Calzetti,et al.  The COSMOS Survey: Hubble Space Telescope Advanced Camera for Surveys Observations and Data Processing , 2007, astro-ph/0703095.

[30]  Cea,et al.  Weak Gravitational Lensing with COSMOS: Galaxy Selection and Shape Measurements , 2007, astro-ph/0702359.

[31]  D. Calzetti,et al.  COSMOS: Hubble Space Telescope Observations , 2006, astro-ph/0612306.

[32]  J.Lee,et al.  THE DARK ENERGY CAMERA , 2004, The Dark Energy Survey.

[33]  E. Turner,et al.  Strong Gravitational Lensing Time Delay Statistics and the Density Profile of Dark Halos , 2001, astro-ph/0112119.