SKINNY-AEAD and SKINNY-Hash v 1 . 0

[1]  Guozhen Liu,et al.  Security Analysis of SKINNY under Related-Tweakey Settings , 2017, IACR Cryptol. ePrint Arch..

[2]  Yu Sasaki,et al.  New Impossible Differential Search Tool from Design and Cryptanalysis Aspects - Revealing Structural Properties of Several Ciphers , 2017, EUROCRYPT.

[3]  Lei Hu,et al.  Programming the Demirci-Selçuk Meet-in-the-Middle Attack with Constraints , 2018, IACR Cryptol. ePrint Arch..

[4]  Dong Yang,et al.  Impossible differential attacks on the SKINNY family of block ciphers , 2017, IET Inf. Secur..

[5]  David A. Wagner,et al.  Tweakable Block Ciphers , 2002, CRYPTO.

[6]  Mathias Hall-Andersen,et al.  Generating Graphs Packed with Paths , 2018, IACR Cryptol. ePrint Arch..

[7]  Morris J. Dworkin,et al.  SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions , 2015 .

[8]  Serge Vaudenay,et al.  Under Pressure: Security of Caesar Candidates beyond their Guarantees , 2017, IACR Cryptol. ePrint Arch..

[9]  Gregor Leander,et al.  Searching for Subspace Trails and Truncated Differentials , 2018, IACR Trans. Symmetric Cryptol..

[10]  Thomas Peyrin,et al.  Tweaks and Keys for Block Ciphers: The TWEAKEY Framework , 2014, ASIACRYPT.

[11]  Phillip Rogaway,et al.  Efficient Instantiations of Tweakable Blockciphers and Refinements to Modes OCB and PMAC , 2004, ASIACRYPT.

[12]  Jérémy Jean,et al.  Selected Areas in Cryptography – SAC 2018 , 2018, Lecture Notes in Computer Science.

[13]  Yusuke Naito,et al.  Improved Indifferentiable Security Analysis of PHOTON , 2014, SCN.

[14]  Mihir Bellare,et al.  OCB: a block-cipher mode of operation for efficient authenticated encryption , 2001, CCS '01.

[15]  Amr M. Youssef,et al.  MILP Modeling for (Large) S-boxes to Optimize Probability of Differential Characteristics , 2017, IACR Trans. Symmetric Cryptol..

[16]  Thomas Peyrin,et al.  The LED Block Cipher , 2011, IACR Cryptol. ePrint Arch..

[17]  Kyoji Shibutani,et al.  Piccolo: An Ultra-Lightweight Blockcipher , 2011, CHES.

[18]  Thomas Peyrin,et al.  Bit-Sliding: A Generic Technique for Bit-Serial Implementations of SPN-based Primitives - Applications to AES, PRESENT and SKINNY , 2017, CHES.

[19]  Stefan Kölbl,et al.  Finding Integral Distinguishers with Ease , 2018, IACR Cryptol. ePrint Arch..

[20]  Thomas Peyrin,et al.  FOAM: Searching for Hardware-Optimal SPN Structures and Components with a Fair Comparison , 2014, CHES.

[21]  Anne Canteaut,et al.  Proving Resistance Against Invariant Attacks: How to Choose the Round Constants , 2017, CRYPTO.

[22]  Nasour Bagheri,et al.  Cryptanalysis of Reduced round SKINNY Block Cipher , 2018, IACR Cryptol. ePrint Arch..

[23]  Raluca POSTEUCA,et al.  NEW RELATED-KEY ATTACKS AND PROPERTIES OF SKINNY-64-128 CIPHER , 2017 .

[24]  Bruce Schneier,et al.  Second Preimages on n-bit Hash Functions for Much Less than 2n Work , 2005, IACR Cryptol. ePrint Arch..

[25]  Dawu Gu,et al.  Differential and Linear Cryptanalysis Using Mixed-Integer Linear Programming , 2011, Inscrypt.

[26]  Stefan Mangard,et al.  Domain-Oriented Masking: Compact Masked Hardware Implementations with Arbitrary Protection Order , 2016, IACR Cryptol. ePrint Arch..

[27]  Pei Zhang,et al.  Differential Cryptanalysis on Block Cipher Skinny with MILP Program , 2018, Secur. Commun. Networks.

[28]  Phillip Rogaway,et al.  The Software Performance of Authenticated-Encryption Modes , 2011, FSE.

[29]  Lei Hu,et al.  Analysis of AES, SKINNY, and Others with Constraint Programming , 2017, IACR Trans. Symmetric Cryptol..

[30]  D. McGrew,et al.  The Galois/Counter Mode of Operation (GCM) , 2005 .

[31]  Christophe De Cannière,et al.  KATAN and KTANTAN - A Family of Small and Efficient Hardware-Oriented Block Ciphers , 2009, CHES.

[32]  Lei Hu,et al.  Automatic Security Evaluation of Block Ciphers with S-bP Structures Against Related-Key Differential Attacks , 2013, Inscrypt.

[33]  Stefan Kölbl,et al.  ShiftRows Alternatives for AES-like Ciphers and Optimal Cell Permutations for Midori and Skinny , 2018, IACR Trans. Symmetric Cryptol..

[34]  Thomas Peyrin,et al.  The SKINNY Family of Block Ciphers and its Low-Latency Variant MANTIS , 2016, IACR Cryptol. ePrint Arch..

[35]  Amr M. Youssef,et al.  Impossible Differential Cryptanalysis of Reduced-Round SKINNY , 2017, AFRICACRYPT.

[36]  Florian Mendel,et al.  Related-Key Impossible-Differential Attack on Reduced-Round Skinny , 2017, ACNS.

[37]  Stefan Kölbl,et al.  Observations on the SIMON Block Cipher Family , 2015, CRYPTO.

[38]  Jian Guo,et al.  Implementing Lightweight Block Ciphers on x86 Architectures , 2013, IACR Cryptol. ePrint Arch..

[39]  Stefan Kölbl,et al.  Mind the Gap - A Closer Look at the Security of Block Ciphers against Differential Cryptanalysis , 2018, IACR Cryptol. ePrint Arch..

[40]  Vincent Rijmen,et al.  Division Cryptanalysis of Block Ciphers with a Binary Diffusion Layer , 2017, IACR Cryptol. ePrint Arch..

[41]  G. V. Assche,et al.  Sponge Functions , 2007 .

[42]  Yafei Zheng,et al.  Biclique Attack of Block Cipher SKINNY , 2016, Inscrypt.

[43]  Gregor Leander,et al.  Linear Cryptanalysis: Key Schedules and Tweakable Block Ciphers , 2017, IACR Trans. Symmetric Cryptol..

[44]  B Guido,et al.  Cryptographic sponge functions , 2011 .

[45]  Christof Paar,et al.  Pushing the Limits: A Very Compact and a Threshold Implementation of AES , 2011, EUROCRYPT.

[46]  Tao Huang,et al.  Boomerang Connectivity Table: A New Cryptanalysis Tool , 2018, IACR Cryptol. ePrint Arch..