Switching off: the phenotypic transition to the uninduced state of the lactose uptake pathway.

[1]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[2]  K. Bettenbrock,et al.  Bistability and Nonmonotonic Induction of the lac Operon in the Natural Lactose Uptake System. , 2017, Biophysical journal.

[3]  Margaret J. Tse,et al.  DNA-Binding Kinetics Determines the Mechanism of Noise-Induced Switching in Gene Networks. , 2015, Biophysical journal.

[4]  Andreas G. Boudouvis,et al.  Effect of Intrinsic Noise on the Phenotype of Cell Populations Featuring Solution Multiplicity: An Artificial lac Operon Network Paradigm , 2015, PloS one.

[5]  Hong Qian,et al.  Stochastic phenotype transition of a single cell in an intermediate region of gene state switching. , 2013, Physical review letters.

[6]  Atul Narang,et al.  Protein Distributions from a Stochastic Model of the lac Operon of E. coli with DNA Looping: Analytical solution and comparison with experiments , 2014, PloS one.

[7]  Joachim O. Rädler,et al.  Single Cell Kinetics of Phenotypic Switching in the Arabinose Utilization System of E. coli , 2014, PloS one.

[8]  Johannes Berg,et al.  What makes the lac-pathway switch: identifying the fluctuations that trigger phenotype switching in gene regulatory systems , 2013, Nucleic acids research.

[9]  Ariel D. Weinberger,et al.  Stochastic Fate Selection in HIV-Infected Patients , 2013, Cell.

[10]  H. Kaback,et al.  Sugar recognition by CscB and LacY. , 2011, Biochemistry.

[11]  H. Kaback,et al.  Opening the periplasmic cavity in lactose permease is the limiting step for sugar binding , 2011, Proceedings of the National Academy of Sciences.

[12]  Julio O. Ortiz,et al.  Noise Contributions in an Inducible Genetic Switch: A Whole-Cell Simulation Study , 2011, PLoS Comput. Biol..

[13]  Avi Ma’ayan,et al.  Systems biology of stem cell fate and cellular reprogramming , 2009, Nature Reviews Molecular Cell Biology.

[14]  Mads Kærn,et al.  A chance at survival: gene expression noise and phenotypic diversification strategies , 2009, Molecular microbiology.

[15]  Michail Stamatakis,et al.  Comparison of deterministic and stochastic models of the lac operon genetic network. , 2009, Biophysical journal.

[16]  Juan F. Poyatos,et al.  Multistable Decision Switches for Flexible Control of Epigenetic Differentiation , 2008, PLoS Comput. Biol..

[17]  Kirsten L. Frieda,et al.  A Stochastic Single-Molecule Event Triggers Phenotype Switching of a Bacterial Cell , 2008, Science.

[18]  Kirsten Jung,et al.  Timing and dynamics of single cell gene expression in the arabinose utilization system. , 2008, Biophysical journal.

[19]  M. Santillán,et al.  Bistable behavior in a model of the lac operon in Escherichia coli with variable growth rate. , 2008, Biophysical journal.

[20]  P. R. ten Wolde,et al.  Reaction coordinates for the flipping of genetic switches. , 2007, Biophysical journal.

[21]  N. Wingreen,et al.  Exponential sensitivity of noise-driven switching in genetic networks , 2007, Physical biology.

[22]  B. Meerson,et al.  Noise enhanced persistence in a biochemical regulatory network with feedback control. , 2007, Physical review letters.

[23]  D. Dubnau,et al.  Noise in Gene Expression Determines Cell Fate in Bacillus subtilis , 2007, Science.

[24]  M C Mackey,et al.  Origin of bistability in the lac Operon. , 2007, Biophysical journal.

[25]  J. Elf,et al.  Probing Transcription Factor Dynamics at the Single-Molecule Level in a Living Cell , 2007, Science.

[26]  Ertugrul M. Ozbudak,et al.  Predicting stochastic gene expression dynamics in single cells. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[27]  J. Onuchic,et al.  Absolute rate theories of epigenetic stability. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Ertugrul M. Ozbudak,et al.  Multistability in the lactose utilization network of Escherichia coli , 2004, Nature.

[29]  M. Mackey,et al.  Why the lysogenic state of phage lambda is so stable: a mathematical modeling approach. , 2004, Biophysical journal.

[30]  K. Sneppen,et al.  Epigenetics as a first exit problem. , 2001, Physical review letters.

[31]  T. Kepler,et al.  Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations. , 2001, Biophysical journal.

[32]  B. Müller-Hill The lac Operon: A Short History of a Genetic Paradigm , 1996 .

[33]  J M Rosenberg,et al.  Kinetic studies of inducer binding to lac repressor.operator complex. , 1980, The Journal of biological chemistry.

[34]  D. Gillespie A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions , 1976 .

[35]  J. Monod,et al.  Genetic regulatory mechanisms in the synthesis of proteins. , 1961, Journal of molecular biology.

[36]  A. Novick,et al.  ENZYME INDUCTION AS AN ALL-OR-NONE PHENOMENON. , 1957, Proceedings of the National Academy of Sciences of the United States of America.