The Mathematical Analysis of Biological Aggregation and Dispersal: Progress, Problems and Perspectives

Motile organisms alter their movement in response to signals in their environment for a variety of reasons, such as to find food or mates or to escape danger. In populations of individuals this often this leads to large-scale pattern formation in the form of coherent movement or localized aggregates of individuals, and an important question is how the individual-level decisions are translated into population-level behavior. Mathematical models are frequently developed for a population-level description, and while these are often phenomenological, it is important to understand how individual-level properties can be correctly embedded in the population-level models. We discuss several classes of models that are used to describe individual movement and indicate how they can be translated into population-level models.

[1]  H. Othmer,et al.  A “Trimer of Dimers”—Based Model for the Chemotactic Signal Transduction Network in Bacterial Chemotaxis , 2012, Bulletin of Mathematical Biology.

[2]  N. Kampen,et al.  Stochastic processes in physics and chemistry , 1981 .

[3]  C. Patlak Random walk with persistence and external bias , 1953 .

[4]  W. Alt Biased random walk models for chemotaxis and related diffusion approximations , 1980, Journal of mathematical biology.

[5]  M. Alber,et al.  Periodic reversal of direction allows Myxobacteria to swarm , 2009, Proceedings of the National Academy of Sciences.

[6]  Hans G. Othmer,et al.  Aggregation, Blowup, and Collapse: The ABC's of Taxis in Reinforced Random Walks , 1997, SIAM J. Appl. Math..

[7]  J. D.,et al.  A Continuum Analysis of the Chemotactic Signal Seen by Dictyostelium discoideum , 1998 .

[8]  Max Born,et al.  A general kinetic theory of liquids I. The molecular distribution functions , 1946, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[9]  Edward A. Codling,et al.  Random walk models in biology , 2008, Journal of The Royal Society Interface.

[10]  J. D. E. Koshland Bacterial chemotaxis as a model behavioral system , 1980 .

[11]  A. M. Edwards,et al.  Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer , 2007, Nature.

[12]  Hans G. Othmer,et al.  The Diffusion Limit of Transport Equations II: Chemotaxis Equations , 2002, SIAM J. Appl. Math..

[13]  B. Perthame Mathematical tools for kinetic equations , 2004 .

[14]  Carlo Cercignani,et al.  Mathematical Methods in Kinetic Theory , 1970 .

[15]  Iztok Lebar Bajec,et al.  Organized flight in birds , 2009, Animal Behaviour.

[16]  P. Tarazona,et al.  Nonequilibrium inertial dynamics of colloidal systems. , 2006, The Journal of chemical physics.

[17]  W. T. Grandy,et al.  Kinetic theory : classical, quantum, and relativistic descriptions , 2003 .

[18]  佐藤 健一 Lévy processes and infinitely divisible distributions , 2013 .

[19]  Wang Qiu-Dong,et al.  The global solution of the N-body problem , 1990 .

[20]  David M. Umulis,et al.  The Intersection of Theory and Application in Elucidating Pattern Formation in Developmental Biology. , 2009, Mathematical modelling of natural phenomena.

[21]  G. Papanicolaou Asymptotic analysis of transport processes , 1975 .

[22]  E. C. Titchmarsh,et al.  The Laplace Transform , 1991, Heat Transfer 1.

[23]  Karl Oelschläger,et al.  A fluctuation theorem for moderately interacting diffusion processes , 1987 .

[24]  B. Perthame,et al.  Mathematik in den Naturwissenschaften Leipzig An Integro-Differential Equation Model for Alignment and Orientational Aggregation , 2007 .

[25]  C. Geiss,et al.  An introduction to probability theory , 2008 .

[26]  Rayleigh The Problem of the Random Walk , 1905, Nature.

[27]  Samuel Karlin,et al.  A First Course on Stochastic Processes , 1968 .

[28]  E. Tadmor,et al.  From particle to kinetic and hydrodynamic descriptions of flocking , 2008, 0806.2182.

[29]  G. Weiss Aspects and Applications of the Random Walk , 1994 .

[30]  L. E. Scriven,et al.  Interactions of reaction and diffusion in open systems , 1969 .

[31]  Lorenzo Pareschi,et al.  Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences , 2010 .

[32]  K. Painter,et al.  A User's Guide to Pde Models for Chemotaxis , 2022 .

[33]  G. Wilemski On the derivation of Smoluchowski equations with corrections in the classical theory of Brownian motion , 1976 .

[34]  Philip K. Maini,et al.  Cellular pattern formation during Dictyostelium aggregation , 1995 .

[35]  Massimo Franceschetti,et al.  When a Random Walk of Fixed Length can Lead Uniformly Anywhere Inside a Hypersphere , 2007 .

[36]  J. R. Philip Diffusion by Continuous Movements , 1968 .

[37]  John William Strutt,et al.  Scientific Papers: On the Resultant of a large number of Vibrations of the same Pitch and of arbitrary Phase , 2009 .

[38]  Liang Li,et al.  Persistent Cell Motion in the Absence of External Signals: A Search Strategy for Eukaryotic Cells , 2008, PloS one.

[39]  Lord Rayleigh F.R.S. XII. On the resultant of a large number of vibrations of the same pitch and of arbitrary phase , 1880 .

[40]  Daniel W. Stroock,et al.  Some stochastic processes which arise from a model of the motion of a bacterium , 1974 .

[41]  J. O. Irwin,et al.  The Frequency Distribution of the Difference between Two Independent Variates Following the Same Poisson Distribution , 1937 .

[42]  Michael J Shelley,et al.  Stability of active suspensions. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  A survey of random processes with reinforcement , 2007, math/0610076.

[44]  D. Morale,et al.  Asymptotic Behavior of a System of Stochastic Particles Subject to Nonlocal Interactions , 2009 .

[45]  M. N. Barber,et al.  Random and restricted walks : theory and applications , 1970 .

[46]  J. Kingman A FIRST COURSE IN STOCHASTIC PROCESSES , 1967 .

[47]  R. Firtel,et al.  Signaling pathways controlling cell polarity and chemotaxis. , 2001, Trends in biochemical sciences.

[48]  明 大久保,et al.  Diffusion and ecological problems : mathematical models , 1980 .

[49]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[50]  Keith R. Yamamoto,et al.  Biological Regulation and Development , 1982, Springer US.

[51]  R. Hall Many-particle systems , 1972 .

[52]  J. Spatz,et al.  Adaptive force transmission in amoeboid cell migration , 2009, Nature Cell Biology.

[53]  J. Dobnikar,et al.  E. coli superdiffusion and chemotaxis-search strategy, precision, and motility. , 2009, Biophysical journal.

[54]  J. Ross,et al.  A model of excitation and adaptation in bacterial chemotaxis. , 1995, Biophysical journal.

[55]  Ken-iti Sato Lévy Processes and Infinitely Divisible Distributions , 1999 .

[56]  Chuan Xue Mathematical models of taxis-driven bacterial pattern formation , 2008 .

[57]  B. Davis,et al.  Reinforced random walk , 1990 .

[58]  T. Passot,et al.  Hydrodynamics of bacterial colonies: a model. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[59]  W. Ebeling Stochastic Processes in Physics and Chemistry , 1995 .

[60]  Max Born,et al.  A general kinetic theory of liquids , 1949 .

[61]  R. Fildes Journal of the Royal Statistical Society (B): Gary K. Grunwald, Adrian E. Raftery and Peter Guttorp, 1993, “Time series of continuous proportions”, 55, 103–116.☆ , 1993 .

[62]  Radek Erban,et al.  From Signal Transduction to Spatial Pattern Formation in E. coli: A Paradigm for Multiscale Modeling in Biology , 2005 .

[63]  Pierre Roux,et al.  What makes cells move: requirements and obstacles for spontaneous cell motility. , 2010, Molecular bioSystems.

[64]  L. Segel,et al.  Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.

[65]  V. M. Kenkre,et al.  Generalized master equations for continuous-time random walks , 1973 .

[66]  H. Othmer,et al.  Models of dispersal in biological systems , 1988, Journal of mathematical biology.

[67]  D. Williams STOCHASTIC DIFFERENTIAL EQUATIONS: THEORY AND APPLICATIONS , 1976 .

[68]  Dirk Horstmann,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences , 2022 .

[69]  J. Southgate,et al.  Agent-based computational modeling of wounded epithelial cell monolayers , 2004, IEEE Transactions on NanoBioscience.

[70]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[71]  Massimo Fornasier,et al.  Particle, kinetic, and hydrodynamic models of swarming , 2010 .

[72]  R. Aris Vectors, Tensors and the Basic Equations of Fluid Mechanics , 1962 .

[73]  Radek Erban,et al.  From Individual to Collective Behavior in Bacterial Chemotaxis , 2004, SIAM J. Appl. Math..

[74]  R. Illner,et al.  The mathematical theory of dilute gases , 1994 .

[75]  D R Soll,et al.  Frequency and orientation of pseudopod formation of Dictyostelium discoideum amebae chemotaxing in a spatial gradient: further evidence for a temporal mechanism. , 1987, Cell motility and the cytoskeleton.

[76]  P. Maini,et al.  Development and applications of a model for cellular response to multiple chemotactic cues , 2000, Journal of mathematical biology.

[77]  E. Montroll Random walks on lattices , 1969 .

[78]  S. Chandrasekhar Stochastic problems in Physics and Astronomy , 1943 .

[79]  J. Douglas Aspects and applications of the random walk , 1995 .

[80]  S. Goldstein ON DIFFUSION BY DISCONTINUOUS MOVEMENTS, AND ON THE TELEGRAPH EQUATION , 1951 .

[81]  A. Czirók,et al.  Collective Motion , 1999, physics/9902023.

[82]  J. Hutchinson,et al.  Use, misuse and extensions of “ideal gas” models of animal encounter , 2007, Biological reviews of the Cambridge Philosophical Society.

[83]  D. Applebaum Lévy Processes and Stochastic Calculus: Preface , 2009 .

[84]  E. Montroll,et al.  Random Walks on Lattices. II , 1965 .

[85]  H. Othmer,et al.  Taxis equations for amoeboid cells , 2006, Journal of mathematical biology.

[86]  Mark Alber,et al.  Macroscopic dynamics of biological cells interacting via chemotaxis and direct contact. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[87]  Piotr Garstecki,et al.  Escherichia coli swim on the right-hand side , 2005, Nature.

[88]  J. S. Parkinson,et al.  A model of excitation and adaptation in bacterial chemotaxis. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[89]  Chuan Xue,et al.  Multiscale Models of Taxis-Driven Patterning in Bacterial Populations , 2009, SIAM J. Appl. Math..

[90]  K. Painter,et al.  Travelling Waves in Hyperbolic Chemotaxis Equations , 2011, Bulletin of mathematical biology.

[91]  Felipe Cucker,et al.  On the mathematical foundations of learning , 2001 .

[92]  C. Parent,et al.  A cell's sense of direction. , 1999, Science.

[93]  R. Fürth,et al.  Die Brownsche Bewegung bei Berücksichtigung einer Persistenz der Bewegungsrichtung. Mit Anwendungen auf die Bewegung lebender Infusorien , 1920 .

[94]  H. Spohn Large Scale Dynamics of Interacting Particles , 1991 .

[95]  D. Lauffenburger,et al.  A simple expression for quantifying bacterial chemotaxis using capillary assay data: application to the analysis of enhanced chemotactic responses from growth-limited cultures. , 1992, Mathematical biosciences.

[96]  H. Othmer,et al.  A theoretical analysis of filament length fluctuations in actin and other polymers , 2011, Journal of mathematical biology.

[97]  H. Berg Random Walks in Biology , 2018 .

[98]  Chuan Xue,et al.  Radial and Spiral Stream Formation in Proteus mirabilis Colonies , 2011, PLoS Comput. Biol..

[99]  Vincenzo Capasso,et al.  An Introduction to Continuous-Time Stochastic Processes: Theory, Models, and Applications to Finance, Biology, and Medicine , 2012 .

[100]  Hans G. Othmer,et al.  The Diffusion Limit of Transport Equations Derived from Velocity-Jump Processes , 2000, SIAM J. Appl. Math..

[101]  H G Othmer,et al.  Differentiation, cell sorting and proportion regulation in the slug stage of Dictyostelium discoideum. , 1986, Journal of theoretical biology.

[102]  Hans G Othmer,et al.  Multi-scale models of cell and tissue dynamics , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[103]  P. A. P. Moran,et al.  An introduction to probability theory , 1968 .

[104]  H. Berg,et al.  Chemotaxis in Escherichia coli analysed by Three-dimensional Tracking , 1972, Nature.

[105]  J. Galle,et al.  From single cells to tissue architecture—a bottom-up approach to modelling the spatio-temporal organisation of complex multi-cellular systems , 2009, Journal of mathematical biology.

[106]  M. Sixt,et al.  Rapid leukocyte migration by integrin-independent flowing and squeezing , 2008, Nature.

[107]  L. Bachelier,et al.  Théorie de la spéculation , 1900 .

[108]  Reinforced Random Walks Reinforced Random Walks , 2022 .

[109]  R. Macnab,et al.  Sensing the Environment , 1980 .

[110]  J. E. Moyal,et al.  THE RANDOM WALK [IN CONTINUOUS TIME] AND ITS APPLICATION TO THE THEORY OF QUEUES , 1959 .

[111]  Angela Stevens,et al.  The Derivation of Chemotaxis Equations as Limit Dynamics of Moderately Interacting Stochastic Many-Particle Systems , 2000, SIAM J. Appl. Math..

[112]  R L Hall,et al.  Amoeboid movement as a correlated walk , 1977, Journal of mathematical biology.

[113]  H. Othmer,et al.  A model for individual and collective cell movement in Dictyostelium discoideum. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[114]  Microscopic derivation of non-Markovian thermalization of a Brownian particle , 1996, cond-mat/9606078.