Analysis of a Reduced-Order HDG Method for the Stokes Equations

In this paper, we analyze a hybridized discontinuous Galerkin method with reduced stabilization for the Stokes equations. The reduced stabilization enables us to reduce the number of facet unknowns and improve the computational efficiency of the method. We provide optimal error estimates in an energy and $$L^2$$L2 norms. It is shown that the reduced method with the lowest-order approximation is closely related to the nonconforming Crouzeix–Raviart finite element method. We also prove that the solution of the reduced method converges to the nonconforming Gauss-Legendre finite element solution as a stabilization parameter $$\tau $$τ tends to infinity and that the convergence rate is $$O(\tau ^{-1})$$O(τ-1).

[1]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[2]  M. Crouzeix,et al.  Nonconforming finite elements for the Stokes problem , 1989 .

[3]  Francisco-Javier Sayas,et al.  Analysis of HDG methods for Stokes flow , 2010, Math. Comput..

[4]  Bernardo Cockburn,et al.  Hybridized globally divergence-free LDG methods. Part I: The Stokes problem , 2005, Math. Comput..

[5]  Bernardo Cockburn,et al.  journal homepage: www.elsevier.com/locate/cma , 2022 .

[6]  Bernardo Cockburn,et al.  Divergence-Free HDG Methods for the Vorticity-Velocity Formulation of the Stokes Problem , 2012, J. Sci. Comput..

[7]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[8]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[9]  Ke Shi,et al.  An HDG Method for Convection Diffusion Equation , 2016, J. Sci. Comput..

[10]  Sukru Guzey,et al.  The embedded discontinuous Galerkin method: application to linear shell problems , 2007 .

[11]  Benjamin Stamm,et al.  Local discontinuous Galerkin method for diffusion equations with reduced stabilization , 2009 .

[12]  H. Egger,et al.  hp analysis of a hybrid DG method for Stokes flow , 2013 .

[13]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .

[14]  Ke Shi,et al.  An HDG method for linear elasticity with strong symmetric stresses , 2013, Math. Comput..

[15]  Bernardo Cockburn,et al.  The Derivation of Hybridizable Discontinuous Galerkin Methods for Stokes Flow , 2009, SIAM J. Numer. Anal..

[16]  Gisbert Stoyan,et al.  Crouzeix-Velte decompositions for higher-order finite elements , 2006, Comput. Math. Appl..

[17]  M. Fortin,et al.  A non‐conforming piecewise quadratic finite element on triangles , 1983 .

[18]  Gisbert Stoyan,et al.  Gauss-Legendre elements: a stable, higher order non-conforming finite element family , 2007, Computing.

[19]  Benjamin Stamm,et al.  Low Order Discontinuous Galerkin Methods for Second Order Elliptic Problems , 2008, SIAM J. Numer. Anal..

[20]  Bernardo Cockburn,et al.  An analysis of HDG methods for the vorticity-velocity-pressure formulation of the Stokes problem in three dimensions , 2012, Math. Comput..

[21]  R. Becker,et al.  Connections between discontinuous Galerkin and nonconforming finite element methods for the Stokes equations , 2012 .

[22]  Bernardo Cockburn,et al.  Devising HDG methods for Stokes flow: An overview , 2014 .

[23]  Issei Oikawa,et al.  A Hybridized Discontinuous Galerkin Method with Reduced Stabilization , 2014, Journal of Scientific Computing.

[24]  Francisco-Javier Sayas,et al.  Divergence-conforming HDG methods for Stokes flows , 2014, Math. Comput..

[25]  Bernardo Cockburn,et al.  A Comparison of HDG Methods for Stokes Flow , 2010, J. Sci. Comput..