A Framework for Skew-Probit Links in Binary Regression

We review several asymmetrical links for binary regression models and present a unified approach for two skew-probit links proposed in the literature. Moreover, under skew-probit link, conditions for the existence of the ML estimators and the posterior distribution under improper priors are established. The framework proposed here considers two sets of latent variables which are helpful to implement the Bayesian MCMC approach. A simulation study to criteria for models comparison is conducted and two applications are made. Using different Bayesian criteria we show that, for these data sets, the skew-probit links are better than alternative links proposed in the literature.

[1]  Barnes Discussion of the Paper , 1961, Public health papers and reports.

[2]  N. Henze A Probabilistic Representation of the 'Skew-normal' Distribution , 1986 .

[3]  Therese A. Stukel,et al.  Generalized logistic models , 1988 .

[4]  D. Collett Modelling Binary Data , 1991 .

[5]  S. Chib,et al.  Bayesian analysis of binary and polychotomous response data , 1993 .

[6]  Ming-Hui Chen,et al.  Propriety of posterior distribution for dichotomous quantal response models , 2000 .

[7]  Claudia Czado,et al.  The effect of link misspecification on binary regression inference , 1992 .

[8]  Jonathan Nagler,et al.  Scobit: An Alternative Estimator to Logit and Probit , 1994 .

[9]  Russell D. Murphy,et al.  TOWARD A NEW POLITICAL METHODOLOGY: Microfoundations and ART , 2006 .

[10]  D. Dey,et al.  A New Skewed Link Model for Dichotomous Quantal Response Data , 1999 .

[11]  The Skew-Normal Distribution , 2004 .

[12]  A. Rukhin Bayes and Empirical Bayes Methods for Data Analysis , 1997 .

[13]  A. Azzalini A class of distributions which includes the normal ones , 1985 .

[14]  Adrian E. Raftery,et al.  Choosing the link function and accounting for link uncertainty in generalized linear models using Bayes factors , 2006 .

[15]  Aki Vehtari,et al.  Discussion on the paper by Spiegelhalter, Best, Carlin and van der Linde , 2002 .

[16]  S. Chib,et al.  Bayesian residual analysis for binary response regression models , 1995 .

[17]  John Geweke,et al.  Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments , 1991 .

[18]  I. Chang,et al.  IMPROVED ESTIMATORS OF THE NATURAL PARAMETERS IN CONTINUOUS MULTIPARAMETER EXPONENTIAL FAMILIES , 2002 .

[19]  J. Neuhaus,et al.  Binomial Regression with Misclassification , 2003, Biometrics.

[20]  Robert E. Weiss,et al.  The Cost of Adding Parameters to a Model , 1996 .

[21]  B. Liseo,et al.  A note on reference priors for the scalar skew-normal distribution , 2006 .

[22]  R. Bargmann,et al.  A Method for the Evaluation of Cumulative Probabilities of Bivariate Distributions using the Pearson Family , 1981 .

[23]  Hea-Jung Kim BINARY REGRESSION WITH A CLASS OF SKEWED t LINK MODELS , 2002 .

[24]  D. Collett,et al.  Modelling Binary Data , 1991 .

[25]  S. Sahu,et al.  A new class of multivariate skew distributions with applications to bayesian regression models , 2003 .

[26]  Bayesian inference of binary regression models with parametric link , 1994 .

[27]  Stephen E. Fienberg,et al.  Discussion on the paper by Spiegelhalter, Sherlaw-Johnson, Bardsley, Blunt, Wood and Grigg , 2012 .

[28]  H. Bolfarine,et al.  A skew item response model , 2006 .

[29]  Ming-Hui Chen Skewed Link Models for Categorical Response Data , 2004 .

[30]  Francisco J. Aranda-Ordaz,et al.  On Two Families of Transformations to Additivity for Binary Response Data , 1981 .

[31]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[32]  R. Prentice,et al.  A generalization of the probit and logit methods for dose response curves. , 1976, Biometrics.

[33]  Adelchi Azzalini,et al.  Skew-Normal Distribution , 2011, International Encyclopedia of Statistical Science.

[34]  Víctor M. Guerrero,et al.  Use of the Box-Cox transformation with binary response models , 1982 .