Strong Categorical Datatypes II: A Term Logic for Categorical Programming
暂无分享,去创建一个
[1] Ryu Hasegawa,et al. Categorical data types in parametric polymorphism , 1994, Mathematical Structures in Computer Science.
[2] Charles Wells. A Generalization of the Concept of Sketch , 1990, Theor. Comput. Sci..
[3] Ryu Hasegawa. Parametricity of Extensionally Collapsed Term Models of Polymorphism and Their Categorical Properties , 1991, TACS.
[4] John C. Reynolds,et al. Types, Abstraction and Parametric Polymorphism , 1983, IFIP Congress.
[5] J. R.B. Cockett. Distributive Logic , 1989 .
[6] R. E. A. Mason,et al. Information Processing 83 , 1984 .
[7] Harry G. Mairson. Outline of a Proof Theory of Parametricity , 1991, FPCA.
[8] Grant Malcolm,et al. Algebraic Data Types and Program Transformation , 1990 .
[9] R. Cockett,et al. Strong categorical datatypes I , 1991 .
[10] Tatsuya Hagino,et al. Codatatypes in ML , 1989, J. Symb. Comput..
[11] John Greiner,et al. Programming with Inductive and Co-Inductive Types , 1992 .
[12] Michael Barr,et al. The Formal Description of Data Types Using Sketches , 1987, MFPS.
[13] G. C. Wraith. A Note on Categorical Datatypes , 1989, Category Theory and Computer Science.
[14] Lawrence C. Paulson,et al. Co-induction and co-recursion in higher-order logic , 1993 .
[15] Philip Wadler,et al. Theorems for free! , 1989, FPCA.
[16] Tim Sheard,et al. A fold for all seasons , 1993, FPCA '93.
[17] John Hughes,et al. Why Functional Programming Matters , 1989, Comput. J..
[18] Maarten M. Fokkinga,et al. Functional Programming with Bananas, Lenses, Envelopes and Barbed Wire , 1991, FPCA.
[19] A. Kock. Strong functors and monoidal monads , 1972 .
[20] Andrew M. Pitts,et al. A co-Induction Principle for Recursively Defined Domains , 1994, Theor. Comput. Sci..
[21] Alley Stoughton,et al. Substitution Revisited , 1988, Theor. Comput. Sci..