In-situ X-ray diffraction study of phase transformations in the Am–O system

In the frame of minor actinides recycling, americium can be transmuted by adding it in UO{sub 2} or (U, Pu)O{sub 2} fuels. Americium oxides exhibiting a higher oxygen potential than U or Pu oxides, its addition alters the fuel properties. To comprehend its influence, a thorough knowledge of the Am-O phase equilibria diagram and of thermal expansion behavior is of main interest. Due to americium scarcity and high radiotoxicity, few experimental reports on this topic are available. Here we present in-situ high-temperature XRD results on the reduction from AmO{sub 2} to Am{sub 2}O{sub 3}. We show that fluorite (Fm-3m) AmO{sub 2} is reduced to cubic (Ia-3) C Prime -type Am{sub 2}O{sub 3+{delta}}, and then into hexagonal (P6{sub 3}/mmc) A-type Am{sub 2}O{sub 3}, which remains stable up to 1840 K. We also demonstrate the transitional existence of the monoclinic (C2/m) B-type Am{sub 2}O{sub 3}. At last, we describe, for the first time, the thermal expansion behavior of the hexagonal Am{sub 2}O{sub 3} between room temperature and 1840 K. - Graphical abstract: Americium dioxide was in situ studied by high-temperature X-ray diffraction. First, fluorite AmO{sub 2} is reduced to cubic C Prime -type Am{sub 2}O{sub 3+{delta}} and then transforms into hexagonal A-typemore » Am{sub 2}O{sub 3}, which remains stable up to 1840 K. Then, we demonstrate the transitional existence of monoclinic B-type Am{sub 2}O{sub 3}. At last, we describe, for the first time, the thermal expansion of A-type Am{sub 2}O{sub 3} between room temperature and 1840 K. This work may contribute to a better understanding of Am oxide behavior. Highlights: Black-Right-Pointing-Pointer We realize an in-situ high-temperature X-ray diffraction study on an AmO{sub 2} sample. Black-Right-Pointing-Pointer Fluorite AmO{sub 2} transforms to cubic Am{sub 2}O{sub 3+{delta}} and then to hexagonal Am{sub 2}O{sub 3}. Black-Right-Pointing-Pointer Little-known monoclinic Am{sub 2}O{sub 3} is observed during the cubic-to-hexagonal transition. Black-Right-Pointing-Pointer Lattice parameter thermal expansion of hexagonal Am{sub 2}O{sub 3} is given up to 1840 K. Black-Right-Pointing-Pointer We give additional data on AmO{sub 2} lattice parameter expansion under self-irradiation.« less

[1]  Robert R. Reeber,et al.  The role of defects on thermophysical properties : thermal expansion of V, Nb, Ta, Mo and W , 1998 .

[2]  T. D. Chikalla,et al.  Thermal expansion of the actinide dioxides , 1974 .

[3]  G. S. Pawley,et al.  Unit-cell refinement from powder diffraction scans , 1981 .

[4]  R. Haire,et al.  Self-irradiation induced structural changes in the transplutonium pyrochlores An2Zr2O7 (An=Am, Cf) , 2005 .

[5]  M. Salvatores Transmutation : Issues, innovative options and perspectives , 2002 .

[6]  Werner Maschek,et al.  Accelerator driven systems for transmutation: Fuel development, design and safety , 2008 .

[7]  I. May,et al.  Recent Advances in Actinide Science , 2006 .

[8]  Rudy J. M. Konings,et al.  Chemical thermodynamic representation of AmO2-x , 2003 .

[9]  K. Konashi,et al.  Oxygen potentials of plutonium and uranium mixed oxide , 2005 .

[10]  J. C. Wallmann A structural transformation of curium sesquioxide , 1964 .

[11]  P. E. Raison,et al.  Zirconia-based materials for transmutation of americium and curium : cubic stabilized zirconia and zirconium oxide pyrochlores , 2001 .

[12]  R. W. Cheary,et al.  A fundamental parameters approach to X-ray line-profile fitting , 1992 .

[13]  D. Mcwhan,et al.  Crystal structure, thermal expansion and melting point of americium metal , 1962 .

[14]  D. Warin Status of the French Research Program on Partitioning and Transmutation , 2007 .

[15]  D. Prieur,et al.  Local structure and charge distribution in mixed uranium-americium oxides: effects of oxygen potential and Am content. , 2011, Inorganic chemistry.

[16]  K. Minato,et al.  Oxygen Potential Measurement of Americium Oxide by Electromotive Force Method , 2008 .

[17]  V. Wheeler,et al.  Thermodynamic and composition changes in UO2±x (x< 0.005) at 1950 K , 1972 .

[18]  P. Damien,et al.  Fabrication and characterisation of U0.85Am0.15O2−x discs for MARIOS irradiation program , 2011 .

[19]  J. Fuger,et al.  Self-irradiation effects in americium oxides , 1977 .

[20]  S. Saxena,et al.  Thermal Expansion of Periclase (MgO) and Tungsten (W) to Melting Temperatures , 1997 .

[21]  R. Konings,et al.  The vaporisation behaviour of americium dioxide by use of mass spectrometry , 2011 .

[22]  C. Sylvie Etude des Proprietes du Systeme Am-O en Vue de la Transmutation de l'Americium 241 en Reacteur a Neutrons Rapides , 1996 .

[23]  Y. Akimoto A NOTE ON AmN AND AmO. , 1967 .

[24]  C. Sari,et al.  An investigation in the americium oxide system , 1970 .

[25]  D. Prieur,et al.  Fabrication and characterization of minor actinides bearing fuels obtained by conventional powder metallurgy process , 2011 .

[26]  L. Eyring,et al.  PHASE RELATIONSHIPS IN THE AMERICIUM--OXYGEN SYSTEM. , 1968 .

[27]  R. Konings,et al.  A thermodynamic study of the Pu–Am–O system , 2011 .

[28]  W. Zachariasen Crystal chemical studies of the 5f‐series of elements. XII. New compounds representing known structure types , 1949 .

[29]  F. Abraham,et al.  Synthesis of new mixed actinides oxalates as precursors of actinides oxide solid solutions , 2007 .

[30]  R. Belin,et al.  New hermetic sample holder for radioactive materials fitting to Siemens D5000 and Bruker D8 X-ray diffractometers: application to the Rietveld analysis of plutonium dioxide , 2004 .

[31]  H. Okamoto Am-O (Americium-Oxygen) , 1991 .

[32]  J. Kloosterman,et al.  A view of strategies for transmutation of actinides , 2001 .

[33]  Lester R. Morss,et al.  The chemistry of the actinide and transactinide elements , 2006 .

[34]  J. Grouiller,et al.  Minor actinides transmutation scenario studies with PWRs, FRs and moderated targets , 2003 .

[35]  D. Prieur,et al.  Fabrication and characterization of americium, neptunium and curium bearing MOX fuels obtained by powder metallurgy process , 2012 .

[36]  R. D. Baybarz High-temperature phases, crystal structures and the melting points for several of the transplutonium sesquioxides☆☆☆ , 1973 .

[37]  N. Wakiya,et al.  Influence of atmosphere on phase transitions of praseodymium oxide at high temperature using high temperature X-ray diffraction and thermogravimetry , 1998 .

[38]  S. Yamanaka,et al.  Oxygen potentials of (U0.685Pu0.270Am0.045)O2−x solid solution , 2005 .