Hydrodynamics of concentrated proteoglycan solutions.

The dynamics of water transport in proteoglycan compartments has been studied in relation to osmotic flow (proteoglycan diffusion) and hydraulic permeability (proteoglycan sedimentation) in concentrated solutions of proteoglycan subunit and native proteoglycan aggregate isolated from Swarm rat chondrosarcoma. A central parameter that describes the kinetics of both types of water movement is the hydrodynamic frictional coefficient of water with proteoglycan. The frictional coefficient is markedly concentration dependent, increasing with increasing concentration, and highlights important structural features and types of organization of the proteoglycans in concentrated solutions. These include the requirements that proteoglycans in the extracellular matrix not to be immobilized but to have translational diffusive mobility and concentration gradients to be osmotically active, that chondroitin sulfate segmental mobility describing translational motion largely determines osmotic flow and hydraulic permeability of the proteoglycans, and that the proteoglycans exhibit an enhanced ability to resist flow as compared to other macromolecules. Additional dynamic studies suggest the formation of transient super-aggregate structures may occur at high concentrations which endows the proteoglycan subunit hydrodynamic properties similar to proteoglycan aggregate.