Axis-aligned filtering for interactive physically-based diffuse indirect lighting

We introduce an algorithm for interactive rendering of physically-based global illumination, based on a novel frequency analysis of indirect lighting. Our method combines adaptive sampling by Monte Carlo ray or path tracing, using a standard GPU-accelerated raytracer, with real-time reconstruction of the resulting noisy images. Our theoretical analysis assumes diffuse indirect lighting, with general Lambertian and specular receivers. In practice, we demonstrate accurate interactive global illumination with diffuse and moderately glossy objects, at 1-3 fps. We show mathematically that indirect illumination is a structured signal in the Fourier domain, with inherent band-limiting due to the BRDF and geometry terms. We extend previous work on sheared and axis-aligned filtering for motion blur and shadows, to develop an image-space filtering method for interreflections. Our method enables 5--8X reduced sampling rates and wall clock times, and converges to ground truth as more samples are added. To develop our theory, we overcome important technical challenges---unlike previous work, there is no light source to serve as a band-limit in indirect lighting, and we also consider non-parallel geometry of receiver and reflecting surfaces, without first-order approximations.

[1]  Ravi Ramamoorthi,et al.  Axis-aligned filtering for interactive sampled soft shadows , 2012, ACM Trans. Graph..

[2]  Baining Guo,et al.  Progressive radiance evaluation using directional coherence maps , 1998, SIGGRAPH.

[3]  Marcus A. Magnor,et al.  Eurographics Symposium on Rendering 2011 Guided Image Filtering for Interactive High-quality Global Illumination , 2022 .

[4]  Kun Zhou,et al.  An efficient GPU-based approach for interactive global illumination , 2009, ACM Trans. Graph..

[5]  Frédo Durand,et al.  A frequency analysis of light transport , 2005, SIGGRAPH '05.

[6]  Holly E. Rushmeier,et al.  Energy preserving non-linear filters , 1994, SIGGRAPH.

[7]  Jan Kautz,et al.  The State of the Art in Interactive Global Illumination , 2012, Comput. Graph. Forum.

[8]  David K. McAllister,et al.  OptiX: a general purpose ray tracing engine , 2010, ACM Trans. Graph..

[9]  Frédo Durand,et al.  Frequency analysis and sheared reconstruction for rendering motion blur , 2009, ACM Trans. Graph..

[10]  Alessandro Foi,et al.  Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering , 2007, IEEE Transactions on Image Processing.

[11]  Soheil Darabi,et al.  On filtering the noise from the random parameters in Monte Carlo rendering , 2012, TOGS.

[12]  Ingo Wald,et al.  State of the Art in Ray Tracing Animated Scenes , 2009, Comput. Graph. Forum.

[13]  Philipp Slusallek,et al.  Interactive Global Illumination using Fast Ray Tracing , 2002, Rendering Techniques.

[14]  Robert L. Cook,et al.  Distributed ray tracing , 1984, SIGGRAPH.

[15]  Paul S. Heckbert,et al.  Irradiance gradients , 2008, SIGGRAPH '08.

[16]  Gregory J. Ward,et al.  A ray tracing solution for diffuse interreflection , 2008, SIGGRAPH '08.

[17]  Yung-Yu Chuang,et al.  SURE-based optimization for adaptive sampling and reconstruction , 2012, ACM Trans. Graph..

[18]  BouatouchKadi,et al.  Radiance Caching for Efficient Global Illumination Computation , 2005 .

[19]  Frédo Durand,et al.  Practical filtering for efficient ray-traced directional occlusion , 2011, ACM Trans. Graph..

[20]  Ramesh Raskar,et al.  Fast separation of direct and global components of a scene using high frequency illumination , 2006, SIGGRAPH 2006.

[21]  Matthias Zwicker,et al.  Adaptive rendering with non-local means filtering , 2012, ACM Trans. Graph..

[22]  F. Durand,et al.  Temporal light field reconstruction for rendering distribution effects , 2011, ACM Trans. Graph..

[23]  Elmar Eisemann,et al.  Interactive Indirect Illumination Using Voxel Cone Tracing , 2011, Comput. Graph. Forum.

[24]  Harry Shum,et al.  Plenoptic sampling , 2000, SIGGRAPH.

[25]  Rui Wang,et al.  Importance Point Projection for GPU‐based Final Gathering , 2011, EGSR '11.

[26]  Frédo Durand,et al.  A precomputed polynomial representation for interactive BRDF editing with global illumination , 2008, TOGS.

[27]  R. Ramamoorthi,et al.  Adaptive wavelet rendering , 2009, SIGGRAPH 2009.

[28]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[29]  Frédo Durand,et al.  5D Covariance tracing for efficient defocus and motion blur , 2013, TOGS.

[30]  Jaakko Lehtinen,et al.  Reconstructing the indirect light field for global illumination , 2012, ACM Trans. Graph..

[31]  Hans-Peter Seidel,et al.  Micro-rendering for scalable, parallel final gathering , 2009, ACM Trans. Graph..

[32]  Frédo Durand,et al.  Frequency analysis and sheared filtering for shadow light fields of complex occluders , 2011, TOGS.

[33]  Frédo Durand,et al.  Fourier depth of field , 2009, TOGS.

[34]  Hendrik P. A. Lensch,et al.  Edge-avoiding À-Trous wavelet transform for fast global illumination filtering , 2010, HPG '10.

[35]  Michael D. McCool,et al.  Anisotropic diffusion for Monte Carlo noise reduction , 1999, TOGS.

[36]  Janne Kontkanen,et al.  Irradiance Filtering for Monte Carlo Ray Tracing , 2006 .

[37]  Dietger van Antwerpen,et al.  Improving SIMD efficiency for parallel Monte Carlo light transport on the GPU , 2011, HPG '11.

[38]  Matthias Zwicker,et al.  Multidimensional adaptive sampling and reconstruction for ray tracing , 2008, ACM Trans. Graph..

[39]  Kadi Bouatouch,et al.  Radiance caching for efficient global illumination computation , 2005 .

[40]  Jan Kautz,et al.  Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments , 2002 .

[41]  Kavita Bala,et al.  Direct-to-indirect transfer for cinematic relighting , 2006, ACM Trans. Graph..

[42]  Timo Aila,et al.  A local image reconstruction algorithm for stochastic rendering , 2011, SI3D.

[43]  James T. Kajiya,et al.  The rendering equation , 1986, SIGGRAPH.