Quantitative mean-field limit for interacting branching diffusions
暂无分享,去创建一个
[1] Esther S. Daus,et al. Global Existence Analysis of Cross-Diffusion Population Systems for Multiple Species , 2016, 1608.03696.
[2] Ansgar Jüngel,et al. Rigorous Derivation of Population Cross-Diffusion Systems from Moderately Interacting Particle Systems , 2020, Journal of Nonlinear Science.
[3] Nicolas Fournier,et al. A microscopic probabilistic description of a locally regulated population and macroscopic approximations , 2004, math/0503546.
[4] A. Sznitman. Topics in propagation of chaos , 1991 .
[5] J. Fontbona,et al. Quantitative Uniform Propagation of Chaos for Maxwell Molecules , 2015, 1512.09308.
[6] J. A. Carrillo,et al. The derivation of swarming models: Mean-field limit and Wasserstein distances , 2013, 1304.5776.
[7] Markus Schmidtchen,et al. Zoology of a Nonlocal Cross-Diffusion Model for Two Species , 2017, SIAM J. Appl. Math..
[8] S. Méléard,et al. Non local Lotka-Volterra system with cross-diffusion in an heterogeneous medium , 2013, Journal of Mathematical Biology.
[9] Donald A. Dawson,et al. Measure-valued Markov processes , 1993 .
[10] S. Méléard. Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models , 1996 .
[11] J. Fontbona,et al. Quantitative propagation of chaos for generalized Kac particle systems , 2014, 1406.2115.
[12] S. M'el'eard,et al. Stochastic Models for Structured Populations: Scaling Limits and Long Time Behavior , 2015, 1506.04165.
[13] A. Esposito,et al. Nonlinear degenerate cross-diffusion systems with nonlocal interaction , 2017, 1710.01653.
[14] N. Shigesada,et al. Spatial segregation of interacting species. , 1979, Journal of theoretical biology.
[15] A. Guillin,et al. On the rate of convergence in Wasserstein distance of the empirical measure , 2013, 1312.2128.
[16] Gershon Wolansky,et al. Optimal Transport , 2021 .
[17] Marco Di Francesco,et al. Measure solutions for non-local interaction PDEs with two species , 2013 .