Multiaxial fatigue life prediction based on a simplified energy-based model

Abstract Thanks to the reliable correlation with experimental data, conventional energy-based models are widely employed in multiaxial fatigue life prediction of structural components, by combining energy-based variables with reference life curves. However, in practical applications, additional calibration factors and incremental plasticity theories are usually indispensable to characterize fatigue damage along multiaxial loading paths, whose procedures are usually rather complicated and time-consuming. In this paper, a simplified energy-based model, as an alternative to the incremental plasticity-based model, is proposed to predict the fatigue life under multiaxial loading. Being different from conventional models, the proposed model is based on a series of multiaxial energy-life curves, which avoids the introduction of additional calibration factors. Particularly, to eliminate the model’s dependence on incremental plasticity theory, the effect of loading paths is captured by a loading path-dependent factor which is derived from the non-proportionality factor and the Moment of Inertia method. The availability of the proposed model is validated by reasonable correlations with experimental data of four kinds of materials under diverse loading paths.

[1]  Aleksander Karolczuk,et al.  Progress in fatigue life calculation by implementing life-dependent material parameters in multiaxial fatigue criteria , 2020, International Journal of Fatigue.

[2]  Ewald Macha,et al.  A critical plane approach based on energy concepts: application to biaxial random tension-compression high-cycle fatigue regime , 1999 .

[3]  Ali Fatemi,et al.  Multiaxial fatigue of titanium including step loading and load path alteration and sequence effects , 2010 .

[4]  Marco Antonio Meggiolaro,et al.  An improved multiaxial rainflow algorithm for non-proportional stress or strain histories – Part I: Enclosing surface methods , 2012 .

[5]  Takamoto Itoh,et al.  Material dependence of multiaxial low cycle fatigue lives under non-proportional loading , 2011 .

[6]  Y. Pi,et al.  Multiaxial low‐cycle fatigue life evaluation under different non‐proportional loading paths , 2018 .

[7]  Ali Fatemi,et al.  Effect of hardness on multiaxial fatigue behaviour and some simple approximations for steels , 2009 .

[8]  Darrell F. Socie,et al.  Multiaxial Fatigue Damage Models , 1987 .

[9]  Ł. Pejkowski On the material's sensitivity to non-proportionality of fatigue loading , 2017 .

[10]  J. Li,et al.  A modification of Smith–Watson–Topper damage parameter for fatigue life prediction under non‐proportional loading , 2012 .

[11]  M. N. James,et al.  Multiaxial fatigue assessment of friction stir welded tubular joints of Al 6082-T6 , 2017 .

[12]  Grzegorz Glinka,et al.  MEAN STRESS EFFECTS IN MULTIAXIAL FATIGUE , 2007 .

[13]  L. Susmel,et al.  A bi-parametric Wöhler curve for high cycle multiaxial fatigue assessment , 2002 .

[14]  Luca Susmel,et al.  A stress‐based method to predict lifetime under multiaxial fatigue loadings , 2003 .

[15]  Y. Garud A New Approach to the Evaluation of Fatigue Under Multiaxial Loadings , 1981 .

[16]  Ł. Pejkowski,et al.  Low-cycle multiaxial fatigue behaviour and fatigue life prediction for CuZn37 brass using the stress-strain models , 2017 .

[17]  Fernand Ellyin,et al.  Multiaxial Fatigue Damage Criterion , 1988 .

[18]  Xiangqiao Yan,et al.  A new method for studying the effect of multiaxial strain states on low cycle non-proportional fatigue prediction , 2018, International Journal of Fatigue.

[19]  K. J. Miller,et al.  A Theory for Fatigue Failure under Multiaxial Stress-Strain Conditions , 1973 .

[20]  Nicholas R. Gates,et al.  On the consideration of normal and shear stress interaction in multiaxial fatigue damage analysis , 2017 .

[21]  Mácha,et al.  Energy criteria of multiaxial fatigue failure , 1999 .

[22]  D. Socie,et al.  Nonproportional Low Cycle Fatigue Criterion for Type 304 Stainless Steel , 1995 .

[23]  Dasheng Wei,et al.  A new life prediction model for multiaxial fatigue under proportional and non-proportional loading paths based on the pi-plane projection , 2017 .

[24]  Marco Antonio Meggiolaro,et al.  Prediction of non-proportionality factors of multiaxial histories using the Moment Of Inertia method , 2014 .

[25]  Yong Li,et al.  A new approach of fatigue life prediction for metallic materials under multiaxial loading , 2015 .

[26]  Hao Wu,et al.  A novel energy-based equivalent damage parameter for multiaxial fatigue life prediction , 2019, International Journal of Fatigue.

[27]  A. Varvani-Farahani,et al.  A new energy-critical plane parameter for fatigue life assessment of various metallic materials subjected to in-phase and out-of-phase multiaxial fatigue loading conditions , 2000 .

[28]  De-Guang Shang,et al.  Prediction of fatigue lifetime under multiaxial cyclic loading using finite element analysis , 2010 .

[29]  W. Yao,et al.  A survey on multiaxial fatigue damage parameters under non‐proportional loadings , 2017 .

[30]  Ł. Pejkowski,et al.  The relationship between additional non-proportional hardening coefficient and fatigue life , 2019, International Journal of Fatigue.

[31]  Ahmad Ghasemi-Ghalebahman,et al.  A fatigue model for sensitive materials to non-proportional loadings , 2015 .

[32]  José M. Martínez-Esnaola,et al.  Modelling multiaxial fatigue with a new combination of critical plane definition and energy-based criterion , 2018 .

[33]  Ayhan Ince,et al.  Load path sensitivity and fatigue life estimation of 30CrNiMo8HH , 2012 .

[34]  H. Jahed,et al.  The choice of cyclic plasticity models in fatigue life assessment of 304 and 1045 steel alloys based on the critical plane-energy fatigue damage approach , 2012 .

[35]  A. Karolczuk,et al.  A Review of Critical Plane Orientations in Multiaxial Fatigue Failure Criteria of Metallic Materials , 2005 .

[36]  Fernand Ellyin,et al.  A criterion for fatigue under multiaxial states of stress , 1974 .

[37]  Michael Vormwald,et al.  Fatigue life predictions by integrating EVICD fatigue damage model and an advanced cyclic plasticity theory , 2009 .

[38]  Kenneth W. Neale,et al.  A Criterion for Low-Cycle Fatigue Failure Under Biaxial States of Stress , 1981 .

[39]  Zengliang Gao,et al.  Multiaxial Fatigue of 16MnR Steel , 2009 .

[40]  Xu Chen,et al.  A critical plane-strain energy density criterion for multiaxial low-cycle fatigue life under non-proportional loading , 1999 .

[41]  M. Brown,et al.  CYCLIC DEFORMATION OF 1% Cr‐Mo‐V STEEL UNDER OUT‐OF‐PHASE LOADS , 1979 .

[42]  J. Martínez-Esnaola,et al.  Fatigue damage prediction in multiaxial loading using a new energy-based parameter , 2017 .

[43]  M. Freitas,et al.  New approach for analysis of complex multiaxial loading paths , 2014 .

[44]  Soon-Bok Lee,et al.  A critical review on multiaxial fatigue assessments of metals , 1996 .

[45]  Huseyin Sehitoglu,et al.  Modeling of cyclic ratchetting plasticity, Part II: Comparison of model simulations with experiments , 1996 .

[46]  Marco Antonio Meggiolaro,et al.  Computational implementation of a non-linear kinematic hardening formulation for tension–torsion multiaxial fatigue calculations , 2016 .

[47]  A. Fatemi,et al.  A CRITICAL PLANE APPROACH TO MULTIAXIAL FATIGUE DAMAGE INCLUDING OUT‐OF‐PHASE LOADING , 1988 .

[48]  Yanyao Jiang,et al.  An experimental evaluation of three critical plane multiaxial fatigue criteria , 2007 .

[49]  Hao Wu,et al.  A modified energy-based model for low-cycle fatigue life prediction under multiaxial irregular loading , 2019, International Journal of Fatigue.

[50]  Yi Sun,et al.  Fatigue life estimation under multiaxial random loading by means of the equivalent Lemaitre stress and multiaxial S–N curve methods , 2015 .