The expanding landscape of ‘oncohistone’ mutations in human cancers

[1]  H. Kimura,et al.  Cancer-associated mutations of histones H2B, H3.1 and H2A.Z.1 affect the structure and stability of the nucleosome , 2018, Nucleic acids research.

[2]  J. Hurst,et al.  Germline mutations affecting the histone H4 core cause a developmental syndrome by altering DNA damage response and cell cycle control , 2017, Nature Genetics.

[3]  Hendrik G. Stunnenberg,et al.  The interplay of epigenetic marks during stem cell differentiation and development , 2017, Nature Reviews Genetics.

[4]  Katharine L. Diehl,et al.  ISWI chromatin remodellers sense nucleosome modifications to determine substrate preference , 2017, Nature.

[5]  Donavan T. Cheng,et al.  Mutational Landscape of Metastatic Cancer Revealed from Prospective Clinical Sequencing of 10,000 Patients , 2017, Nature Medicine.

[6]  C. Sander,et al.  3D clusters of somatic mutations in cancer reveal numerous rare mutations as functional targets , 2017, Genome Medicine.

[7]  Dylan M. Marchione,et al.  Impaired H3K36 methylation defines a subset of head and neck squamous cell carcinomas , 2017, Nature Genetics.

[8]  S. Mane,et al.  Mutational landscape of uterine and ovarian carcinosarcomas implicates histone genes in epithelial–mesenchymal transition , 2016, Proceedings of the National Academy of Sciences.

[9]  G. Crabtree,et al.  The Many Roles of BAF (mSWI/SNF) and PBAF Complexes in Cancer. , 2016, Cold Spring Harbor perspectives in medicine.

[10]  S. Thibodeau,et al.  The histone H3.3K36M mutation reprograms the epigenome of chondroblastomas , 2016, Science.

[11]  B. Garcia,et al.  Histone H3K36 mutations promote sarcomagenesis through altered histone methylation landscape , 2016, Science.

[12]  Song Tan,et al.  Recognition of the nucleosome by chromatin factors and enzymes. , 2016, Current opinion in structural biology.

[13]  Donavan T. Cheng,et al.  Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT): A Hybridization Capture-Based Next-Generation Sequencing Clinical Assay for Solid Tumor Molecular Oncology. , 2015, The Journal of molecular diagnostics : JMD.

[14]  M. Stratton,et al.  Distinct H3F3A and H3F3B driver mutations define chondroblastoma and giant cell tumor of bone , 2013, Nature Genetics.

[15]  Benjamin J. Raphael,et al.  Mutational landscape and significance across 12 major cancer types , 2013, Nature.

[16]  C. Roberts,et al.  The SWI/SNF tumor suppressor complex , 2013, Nucleus.

[17]  B. Garcia,et al.  Inhibition of PRC2 Activity by a Gain-of-Function H3 Mutation Found in Pediatric Glioblastoma , 2013, Science.

[18]  Sabine Mueller,et al.  The histone H3.3K27M mutation in pediatric glioma reprograms H3K27 methylation and gene expression. , 2013, Genes & development.

[19]  Shabaz Mohammed,et al.  Comparative Phosphoproteomic Analysis of Checkpoint Recovery Identifies New Regulators of the DNA Damage Response , 2013, Science Signaling.

[20]  Benjamin E. Gross,et al.  Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal , 2013, Science Signaling.

[21]  K. Kinzler,et al.  Cancer Genome Landscapes , 2013, Science.

[22]  Peter W. Laird,et al.  Interplay between the Cancer Genome and Epigenome , 2013, Cell.

[23]  Benjamin E. Gross,et al.  The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. , 2012, Cancer discovery.

[24]  J. Tyler,et al.  Histone exchange and histone modifications during transcription and aging. , 2012, Biochimica et biophysica acta.

[25]  Eric S. Lander,et al.  Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing , 2012, Proceedings of the National Academy of Sciences.

[26]  David T. W. Jones,et al.  Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma , 2012, Nature.

[27]  Li Ding,et al.  Somatic Histone H3 Alterations in Paediatric Diffuse Intrinsic Pontine Gliomas and Non-Brainstem Glioblastomas , 2012, Nature Genetics.

[28]  C. Allis,et al.  Spreading Chromatin into Chemical Biology , 2011, Chembiochem : a European journal of chemical biology.

[29]  M. Shipp,et al.  BBAP monoubiquitylates histone H4 at lysine 91 and selectively modulates the DNA damage response. , 2009, Molecular cell.

[30]  Michael A. Freitas,et al.  Histone H4 lysine 91 acetylation a core domain modification associated with chromatin assembly. , 2005, Molecular cell.

[31]  C. Peterson,et al.  Phosphorylation of linker histones regulates ATP-dependent chromatin remodeling enzymes , 2002, Nature Structural Biology.

[32]  C. Peterson,et al.  The SIN domain of the histone octamer is essential for intramolecular folding of nucleosomal arrays , 2002, Nature Structural Biology.

[33]  C. Allis,et al.  Translating the Histone Code , 2001, Science.

[34]  C. Allis,et al.  The language of covalent histone modifications , 2000, Nature.

[35]  T. Richmond,et al.  Crystal structure of the nucleosome core particle at 2.8 Å resolution , 1997, Nature.

[36]  I. Herskowitz,et al.  Amino acid substitutions in the structured domains of histones H3 and H4 partially relieve the requirement of the yeast SWI/SNF complex for transcription. , 1995, Genes & development.