Curve Reconstruction, the Traveling Salesman Problem, and Menger’s Theorem on Length
暂无分享,去创建一个
[1] Kurt Mehlhorn,et al. Curve reconstruction: connecting dots with good reason , 1999, SCG '99.
[2] John W. Dawson,et al. Ergebnisse eines Mathematischen Kolloquiums , 1998 .
[3] K. Falconer. The geometry of fractal sets: Contents , 1985 .
[4] Tamal K. Dey,et al. Reconstructing curves with sharp corners , 2001, Comput. Geom..
[5] Yu. G. Reshtenyak. Some applications of integral geometry to the theory of curves of finite rotation , 1988 .
[6] K. Menger,et al. Untersuchungen über allgemeine Metrik. Vierte Untersuchung. Zur Metrik der Kurven , 1930 .
[7] Tamal K. Dey,et al. Reconstruction curves with sharp corners , 2000, SCG '00.
[8] A D Aleksandrov,et al. Integral curvature of a curve in n-dimensional Euclidean space , 1988 .
[9] David Eppstein,et al. The Crust and the beta-Skeleton: Combinatorial Curve Reconstruction , 1998, Graph. Model. Image Process..
[10] Kurt Mehlhorn,et al. Experiments on Curve Reconstruction , 2000 .
[11] Kurt Mehlhorn,et al. TSP-based curve reconstruction in polynomial time , 2000, SODA '00.
[12] Christopher M. Gold,et al. Crust and anti-crust: a one-step boundary and skeleton extraction algorithm , 1999, SCG '99.
[13] K. Falconer. The geometry of fractal sets , 1985 .
[14] Gerald B. Folland,et al. Real Analysis: Modern Techniques and Their Applications , 1984 .
[15] Tamal K. Dey,et al. A simple provable algorithm for curve reconstruction , 1999, SODA '99.