Contralateral projections of the optic tectum in the zebra finch (Taenopygia guttata castanotis)

SummaryEfferent projections of the optic tectum of zebra finches were investigated by injection of the radioactive anterograde tracer 3H-proline. In addition to a variety of ipsilateral projections, some contralateral connections were found. Quantitative evaluation of the recrossing tecto-rotundal and nucleus subpraetectalis/nucleus interstitio-praetecto-subpraetectalis projection revealed that these connections are much stronger than previously believed. In contrast, the tecto-tectal projection is very weak, as has been shown previously. Further support for this comes from results obtained using injections of retrograde tracers. The role of the different projections in conveying information from the ipsilateral eye to the ectostriatum, the telencephalic end-station of the tectofugal pathway, is discussed.

[1]  M. Haby,et al.  An anatomical study of ipsilateral retinal projections in the quail using radioautographic, horseradish peroxidase, fluorescence and degeneration techniques , 1985, Brain Research.

[2]  M. Cuénod,et al.  Electrophysiology of the intertectal commissures in the pigeon II. Inhibitory interaction , 2004, Experimental Brain Research.

[3]  H. Bischof A stereotaxic headholder for small birds , 1981, Brain Research Bulletin.

[4]  J. Delius,et al.  Cutaneous sensory projections to the avian forebrain. , 1972, Brain research.

[5]  F. Magni,et al.  A direct connection between visual Wulst and Tectum opticum in the pigeon (Columba livia) demonstrated by horseradish peroxidase. , 1980, Archives italiennes de biologie.

[6]  H. Bischof,et al.  Ultrastructural effects of monocular deprivation in the neuropil of nucleus rotundus in the zebra finch: a quantitative electron microscopic study , 1987, Brain Research.

[7]  K. Herrmann,et al.  Effects of monocular deprivation in the nucleus rotundus of zebra finches: a Nissl and deoxyglucose study , 2004, Experimental Brain Research.

[8]  H. Karten,et al.  Organization of the tectofugal visual pathway in the pigeon: A retrograde transport study , 1976, The Journal of comparative neurology.

[9]  A. Holden,et al.  Response characteristics of pigeon forebrain cells to visual stimulation. , 1971, Vision research.

[10]  N. Mello,et al.  Interhemispheric projections of the optic tectum in pigeon. , 1975, Brain, behavior and evolution.

[11]  D. M. Parker,et al.  Visual evoked potentials in the forebrain of the pigeon , 2004, Experimental Brain Research.

[12]  Revzin Am Some characteristics of wide-field units in the brain of the pigeon. , 1970 .

[13]  R. Lund,et al.  Transient retinofugal pathways in the developing chick , 2004, Experimental Brain Research.

[14]  John D. Pettigrew,et al.  Comparison of the Retinotopic Organization of the Visual Wulst in Nocturnal and Diurnal Raptors, with a Note on the Evolution of Frontal Vision , 1978 .

[15]  P. Wilson The organization of the visual hyperstriatum in the domestic chick. II. Receptive field properties of single units , 1980, Brain Research.

[16]  J. Pettigrew,et al.  Neurons selective for orientation and binocular disparity in the visual Wulst of the barn owl (Tyto alba). , 1976, Science.

[17]  S. Hunt,et al.  Observations on the projections and intrinsic organization of the pigeon optic tectum: An autoradiographic study based on anterograde and retrograde, axonal and dendritic flow , 1976, The Journal of comparative neurology.

[18]  H. Künzle,et al.  Selective uptake and transport of label within three identified neuronal systems after injection of 3H‐GABA into the pigeon optic tectum: An autoradiographic and golgi study , 1976, The Journal of comparative neurology.

[19]  R. Phillips,et al.  Responses in the avian midbrain, thalamus and forebrain evoked by click stimuli. , 1967, Experimental neurology.

[20]  H. Karten,et al.  The organization of the ascending auditory pathway in the pigeon (Columba livia). I. Diencephalic projections of the inferior colliculus (nucleus mesencephali lateralis, pars dorsalis). , 1967, Brain research.

[21]  H. Karten,et al.  GABA-ergic inputs to the nucleus rotundus in pigeons (Columba livia) , 1988 .

[22]  H. Karten,et al.  Rostral projections of the optic tectum and the nucleus rotundus in the pigeon , 1967 .

[23]  Analysis of field response in optic tectum of the pigeon. , 1973, Brain research.

[24]  W M Cowan,et al.  The development and restriction of the ipsilateral retinofugal projection in the chick. , 1983, Brain research.

[25]  H. Karten,et al.  Basal ganglia pathways to the tectum: The afferent and efferent connections of the lateral spiriform nucleus of pigeon , 1982, The Journal of comparative neurology.

[26]  M. Cuénod,et al.  Electrophysiology of the intertectal commissures in the pigeon I. Analysis of the pathways , 2004, Experimental Brain Research.

[27]  K. Herrmann,et al.  Monocular deprivation affects neuron size in the ectostriatum of the zebra finch brain , 1986, Brain Research.

[28]  H. Bischof,et al.  Flash evoked potentials in the ectostriatum of the zebra finch: a current source-density analysis , 2004, Experimental Brain Research.

[29]  A. Revzin Some characteristics of wide-field units in the brain of the pigeon. , 1970, Brain, behavior and evolution.

[30]  W. Cowan,et al.  An experimental study of the avian visual system. , 1961, Journal of anatomy.

[31]  H. Bischof,et al.  Enucleation enhances ipsilateral flash evoked responses in the ectostriatum of the zebra finch (Taeniopygia guttata castanotis Gould) , 1988, Experimental Brain Research.

[32]  P F Knudsen,et al.  Space‐Mapped auditory projections from the inferior colliculus to the optic tectum in the barn owl (Tyto alba) , 1983, The Journal of comparative neurology.

[33]  Peter Wilson,et al.  The organization of the visual hyperstriatum in the domestic chick. I. Topology and topography of the visual projection , 1980, Brain Research.

[34]  H. Karten,et al.  A stereotaxic atlas of the brain of the pigeon (Columba livia) , 1967 .

[35]  F. Nottebohm,et al.  The telencephalon, diencephalon, and mesencephalon of the canary, Serinus canaria, in stereotaxic coordinates , 1974, The Journal of comparative neurology.

[36]  M. Mesulam,et al.  Tetramethyl benzidine for horseradish peroxidase neurohistochemistry: a non-carcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents. , 1978, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.