A Characterization of a Dot-Depth Two Analogue of Generalized Definite Languages
暂无分享,去创建一个
[1] J. Green,et al. On semi-groups in which xr = x , 1952, Mathematical Proceedings of the Cambridge Philosophical Society.
[2] Janusz A. Brzozowski,et al. Characterizations of locally testable events , 1973, Discret. Math..
[3] Janusz A. Brzozowski,et al. Dot-Depth of Star-Free Events , 1971, Journal of computer and system sciences (Print).
[4] R. McNaughton,et al. Counter-Free Automata , 1971 .
[5] Magnus steinby. On definite automata and related systems , 1969 .
[6] Albert R. Meyer,et al. A Note on Star-Free Events , 1969, JACM.
[7] Janusz A. Brzozowski,et al. A generalization of finiteness , 1976 .
[8] Jean Françon. Arbres Binaires de Recherche: Propriétés Combinatioires et Applications , 1976, RAIRO Theor. Informatics Appl..
[9] Karel Culik,et al. Classification of Noncounting Events , 1971, J. Comput. Syst. Sci..
[10] Janusz A. Brzozowski,et al. The Dot-Depth Hierarchy of Star-Free Languages is Infinite , 1978, J. Comput. Syst. Sci..
[11] Abraham Ginzburg,et al. About Some Properties of Definite, Reverse-Definite and Related Automata , 1966, IEEE Trans. Electron. Comput..
[12] Marcel Paul Schützenberger,et al. On Finite Monoids Having Only Trivial Subgroups , 1965, Inf. Control..
[13] Janusz A. Brzozowski,et al. Hierarchies of Aperiodic Languages , 1976, RAIRO Theor. Informatics Appl..
[14] J. Brzozowski. Canonical regular expressions and minimal state graphs for definite events , 1962 .
[15] Faith Ellen,et al. Languages of R-Trivial Monoids , 1980, J. Comput. Syst. Sci..
[16] Micha A. Perles,et al. The Theory of Definite Automata , 1963, IEEE Trans. Electron. Comput..
[17] Imre Simon,et al. Piecewise testable events , 1975, Automata Theory and Formal Languages.
[18] Yechezkel Zalcstein,et al. Locally Testable Languages , 1972, J. Comput. Syst. Sci..
[19] S C Kleene,et al. Representation of Events in Nerve Nets and Finite Automata , 1951 .