Mechanics of the inelastic behavior of materials—part 1, theoretical underpinnings

Abstract This is the first of a two-part paper that is concerned with the modeling of the behavior of inelastic materials from a continuum viewpoint, taking into account changes in the elastic response and material symmetry that occur due to changes in the microstructure of the material. The first part discusses some of the fundamental issues that must be addressed when modeling the elastic response of these materials. In particular, we discuss in detail the far reaching effects of the notion of materials with families of elastic response functions with corresponding natural configurations that was introduced by Wineman and Rajagopal (1990, Archives of Mechanics, 42, 53–75) and Rajagopal and Wineman (1992, Int. J. Plasticity 8, 385–395) for the study of the inelastic behavior of polymeric materials and later generalized and extended to the study of deformation twinning of polycrystals by Rajagopal and Srinivasa (1995 Int. J. Plasticity 11(6), 653–678, 1997, 13(1/2) 1–35). For these materials, a definition of material symmetry is introduced, that makes it possible to discuss the concept of “evolving material symmetry”.

[1]  James H. Whitelaw,et al.  Foundations of continuum thermodynamics , 1974 .

[2]  P. M. Naghdi,et al.  Rate-Type Constitutive Equations and Elastic-Plastic Materials. , 1973 .

[3]  J. D. Eshelby The Continuum Theory of Lattice Defects , 1956 .

[4]  Cristian Teodosiu Continuous Distributions of Dislocations , 1982 .

[5]  Frank Reginald Nunes Nabarro,et al.  Theory of crystal dislocations , 1967 .

[6]  A. Peterlin Crystallization from a strained melt or solution , 1976 .

[7]  M. Tresca On the “Flow of Solids” with the Practical Application in Forgings, &C.: , 1867 .

[8]  N. Fox ON THE CONTINUUM THEORIES OF DISLOCATIONS AND PLASTICITY , 1968 .

[9]  A. Wineman,et al.  On a constitutive theory for materials undergoing microstructural changes , 1990 .

[10]  P. M. Naghdi,et al.  Some general results in the theory of crystallographic slip , 1994 .

[11]  En-Jui Lee Elastic-Plastic Deformation at Finite Strains , 1969 .

[12]  G. Taylor,et al.  The Plastic Extension and Fracture of Aluminium Crystals , 1925 .

[13]  E. Lee,et al.  Some Anomalies in the Structure of Elastic-Plastic Theory at Finite Strain , 1996 .

[14]  C. Truesdell,et al.  The Non-Linear Field Theories of Mechanics , 1965 .

[15]  de Saint-Venant,et al.  Mémoire sur l'établissement des équations différentielles des mouvements intérieurs opérés dans les corps solides ductiles au delà des limites où l'élasticité pourrait les ramener à leur premier état. , 1871 .

[16]  R. Hill The mathematical theory of plasticity , 1950 .

[17]  A. Tobolsky,et al.  Systems Manifesting Superposed Elastic and Viscous Behavior , 1945 .

[18]  Spannungsverteilung in plastischen Körpern , 1961 .

[19]  P. M. Naghdi,et al.  A general theory of an elastic-plastic continuum , 1965 .

[20]  J. Casey On finitely deforming rigid-plastic materials , 1986 .

[21]  A. Reuss,et al.  Berücksichtigung der elastischen Formänderung in der Plastizitätstheorie , 1930 .

[22]  M. E. Backman Form for the Relation Between Stress and Finite Elastic and Plastic Strains under Impulsive Loading , 1964 .

[23]  Walter Noll A New Mathematical Theory of Simple Materials , 1972 .

[24]  E. Kröner,et al.  Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen , 1959 .

[25]  Carl Eckart,et al.  The Thermodynamics of Irreversible Processes. IV. The Theory of Elasticity and Anelasticity , 1948 .

[26]  J. Mandel Thermodynamics and Plasticity , 1973 .

[27]  B. Bilby,et al.  Continuous distributions of dislocations. Ill , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[28]  P. M. Naghdi,et al.  A prescription for the identification of finite plastic strain , 1992 .

[29]  Arun R. Srinivasa,et al.  On the inelastic behavior of solids — Part 1: Twinning , 1995 .

[30]  E. H. Lee,et al.  Finite‐Strain Elastic—Plastic Theory with Application to Plane‐Wave Analysis , 1967 .

[31]  Arun R. Srinivasa,et al.  Inelastic behavior of materials. Part II. Energetics associated with discontinuous deformation twinning , 1997 .

[32]  Kumbakonam R. Rajagopal,et al.  On constitutive equations for branching of response with selectivity , 1980 .

[33]  P. M. Naghdi,et al.  A critical review of the state of finite plasticity , 1990 .

[34]  Kumbakonam R. Rajagopal,et al.  A CONSTITUTIVE EQUATION FOR NONLINEAR SOLIDS WHICH UNDERGO DEFORMATION INDUCED MICROSTRUCTURAL CHANGES , 1992 .

[35]  A. Wineman,et al.  Changes in material symmetry associated with deformation: Uniaxial extension , 1988 .