Nonlinear signal models: geometry, algorithms, and analysis

Traditional signal processing systems, based on linear modeling principles, face a stifling pressure to meet present-day demands caused by the deluge of data generated, transmitted and processed across the globe. Fortunately, recent advances have resulted in the emergence of more sophisticated, nonlinear signal models. Such nonlinear models have inspired fundamental changes in which information processing systems are designed and analyzed. For example, the sparse signal model serves as the basis for Compressive Sensing (CS), an exciting new framework for signal acquisition. In this thesis, we advocate a geometry-based approach for nonlinear modeling of signal ensembles. We make the guiding assumption that the signal class of interest forms a nonlinear low-dimensional manifold belonging to the high-dimensional signal space. A host of traditional nonlinear data models can be essentially interpreted as specific instances of such manifolds. Therefore, our proposed geometric approach provides a common framework that can unify, analyze, and significantly extend the scope of nonlinear models for information acquisition and processing. We demonstrate that the geometric approach enables new algorithms and analysis for a number of signal processing applications. Our specific contributions include: (i) new convex formulations and algorithms for the design of linear systems for data acquisition, compression, and classification; (ii) a general algorithm for reconstruction, deconvolution, and denoising of signals, images, and matrix-valued data; (iii) efficient methods for inference from a small number of linear signal samples, without ever resorting to reconstruction; and, (iv) new signal and image representations for robust modeling and processing of large-scale data ensembles.

[1]  W. Boothby An introduction to differentiable manifolds and Riemannian geometry , 1975 .

[2]  Richard Baraniuk,et al.  Random Projections for Manifold Learning : Proofs and Analysis , 2007 .

[3]  Antonio Torralba,et al.  Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope , 2001, International Journal of Computer Vision.

[4]  Joel A. Tropp,et al.  Sharp recovery bounds for convex deconvolution, with applications , 2012, ArXiv.

[5]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[6]  Tommi S. Jaakkola,et al.  Weighted Low-Rank Approximations , 2003, ICML.

[7]  Anupam Gupta,et al.  An elementary proof of the Johnson-Lindenstrauss Lemma , 1999 .

[8]  Piotr Indyk,et al.  Approximate nearest neighbors: towards removing the curse of dimensionality , 1998, STOC '98.

[9]  Kush R. Varshney,et al.  Sparse Representation in Structured Dictionaries With Application to Synthetic Aperture Radar , 2008, IEEE Transactions on Signal Processing.

[10]  Volkan Cevher,et al.  Sparse Signal Recovery Using Markov Random Fields , 2008, NIPS.

[11]  Richard G. Baraniuk,et al.  Random Projections of Smooth Manifolds , 2009, Found. Comput. Math..

[12]  Volkan Cevher,et al.  Model-Based Compressive Sensing , 2008, IEEE Transactions on Information Theory.

[13]  Trevor Darrell,et al.  The pyramid match kernel: discriminative classification with sets of image features , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[14]  Richard G Baraniuk,et al.  More Is Less: Signal Processing and the Data Deluge , 2011, Science.

[15]  Robert D. Nowak,et al.  Compressive wireless sensing , 2006, 2006 5th International Conference on Information Processing in Sensor Networks.

[16]  Bernard Chazelle,et al.  The Fast Johnson--Lindenstrauss Transform and Approximate Nearest Neighbors , 2009, SIAM J. Comput..

[17]  Mikhail Belkin,et al.  Semi-Supervised Learning on Riemannian Manifolds , 2004, Machine Learning.

[18]  Michael I. Miller,et al.  Group Actions, Homeomorphisms, and Matching: A General Framework , 2004, International Journal of Computer Vision.

[19]  Cordelia Schmid,et al.  Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[20]  S. Kirolos,et al.  Analog-to-Information Conversion via Random Demodulation , 2006, 2006 IEEE Dallas/CAS Workshop on Design, Applications, Integration and Software.

[21]  Francesco Camastra,et al.  Data dimensionality estimation methods: a survey , 2003, Pattern Recognit..

[22]  Stéphane Lafon,et al.  Diffusion maps , 2006 .

[23]  Rajesh P. N. Rao,et al.  Learning the Lie Groups of Visual Invariance , 2007, Neural Computation.

[24]  Mike E. Davies,et al.  Iterative Hard Thresholding for Compressed Sensing , 2008, ArXiv.

[25]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[26]  Nir Friedman,et al.  Probabilistic Graphical Models - Principles and Techniques , 2009 .

[27]  J. Meijerink,et al.  An iterative solution method for linear systems of which the coefficient matrix is a symmetric -matrix , 1977 .

[28]  John Wright,et al.  Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Matrices via Convex Optimization , 2009, NIPS.

[29]  W. B. Johnson,et al.  Extensions of Lipschitz mappings into Hilbert space , 1984 .

[30]  Chinmay Hegde,et al.  Go with the flow: Optical flow-based transport operators for image manifolds , 2011, 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[31]  Noga Alon,et al.  Problems and results in extremal combinatorics--I , 2003, Discret. Math..

[32]  Emmanuel J. Candès,et al.  PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming , 2011, ArXiv.

[33]  Alfred O. Hero,et al.  Geodesic entropic graphs for dimension and entropy estimation in manifold learning , 2004, IEEE Transactions on Signal Processing.

[34]  Huibert Kwakernaak,et al.  Linear Optimal Control Systems , 1972 .

[35]  Aswin C. Sankaranarayanan,et al.  Learning Manifolds in the Wild , 2012 .

[36]  Simon Haykin,et al.  Optimally adaptive transform coding , 1995, IEEE Trans. Image Process..

[37]  Richard G. Baraniuk,et al.  The smashed filter for compressive classification and target recognition , 2007, Electronic Imaging.

[38]  Edmund Taylor Whittaker XVIII.—On the Functions which are represented by the Expansions of the Interpolation-Theory , 1915 .

[39]  Fatih Murat Porikli,et al.  Learning on lie groups for invariant detection and tracking , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[40]  Andrea Montanari,et al.  Message-passing algorithms for compressed sensing , 2009, Proceedings of the National Academy of Sciences.

[41]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[42]  E.J. Candes Compressive Sampling , 2022 .

[43]  Rahul Garg,et al.  Gradient descent with sparsification: an iterative algorithm for sparse recovery with restricted isometry property , 2009, ICML '09.

[44]  Chinmay Hegde,et al.  Joint Manifolds for Data Fusion , 2010, IEEE Transactions on Image Processing.

[45]  A. Willsky,et al.  Signals and Systems , 2004 .

[46]  Rémi Gribonval,et al.  Sparse representations in unions of bases , 2003, IEEE Trans. Inf. Theory.

[47]  Pablo A. Parrilo,et al.  Rank-Sparsity Incoherence for Matrix Decomposition , 2009, SIAM J. Optim..

[48]  Yi Ma,et al.  Compressive principal component pursuit , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[49]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[50]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[51]  Cordelia Schmid,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[52]  G. Sapiro,et al.  A collaborative framework for 3D alignment and classification of heterogeneous subvolumes in cryo-electron tomography. , 2013, Journal of structural biology.

[53]  Volkan Cevher,et al.  Matrix Recipes for Hard Thresholding Methods , 2012, Journal of Mathematical Imaging and Vision.

[54]  Richard G. Baraniuk,et al.  An Architecture for Compressive Imaging , 2006, 2006 International Conference on Image Processing.

[55]  J. Morel,et al.  INTRODUCTION 1 On the consistency of the SIFT Method , 2008 .

[56]  D.J.C. MacKay,et al.  Good error-correcting codes based on very sparse matrices , 1997, Proceedings of IEEE International Symposium on Information Theory.

[57]  H. H. Rachford,et al.  On the numerical solution of heat conduction problems in two and three space variables , 1956 .

[58]  C.E. Shannon,et al.  Communication in the Presence of Noise , 1949, Proceedings of the IRE.

[59]  Don H. Johnson,et al.  Array Signal Processing: Concepts and Techniques , 1993 .

[60]  Steven M. Seitz,et al.  Photo tourism: exploring photo collections in 3D , 2006, ACM Trans. Graph..

[61]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[62]  Marco F. Duarte,et al.  Compressive sensing recovery of spike trains using a structured sparsity model , 2009 .

[63]  Michael B. Wakin,et al.  Analysis of Orthogonal Matching Pursuit Using the Restricted Isometry Property , 2009, IEEE Transactions on Information Theory.

[64]  E. B. Andersen,et al.  Modern factor analysis , 1961 .

[65]  I. Hassan Embedded , 2005, The Cyber Security Handbook.

[66]  D. Barry Nonparametric Bayesian Regression , 1986 .

[67]  David Gross,et al.  Recovering Low-Rank Matrices From Few Coefficients in Any Basis , 2009, IEEE Transactions on Information Theory.

[68]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[69]  D. Donoho,et al.  Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA) , 2005 .

[70]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[71]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[72]  R. DeVore,et al.  A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .

[73]  Gordon Bell,et al.  Beyond the Data Deluge , 2009, Science.

[74]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[75]  Richard G. Baraniuk,et al.  The multiscale structure of non-differentiable image manifolds , 2005, SPIE Optics + Photonics.

[76]  Michael E. Tipping,et al.  Probabilistic Principal Component Analysis , 1999 .

[77]  Stephen Smale,et al.  Finding the Homology of Submanifolds with High Confidence from Random Samples , 2008, Discret. Comput. Geom..

[78]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[79]  Kilian Q. Weinberger,et al.  Unsupervised Learning of Image Manifolds by Semidefinite Programming , 2004, CVPR.

[80]  Helmut Bölcskei,et al.  Recovery of Sparsely Corrupted Signals , 2011, IEEE Transactions on Information Theory.

[81]  Peter E. Hart,et al.  Nearest neighbor pattern classification , 1967, IEEE Trans. Inf. Theory.

[82]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[83]  David L. Donoho,et al.  Image Manifolds which are Isometric to Euclidean Space , 2005, Journal of Mathematical Imaging and Vision.

[84]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2009, Found. Comput. Math..

[85]  Emmanuel J. Candès,et al.  Simple Bounds for Low-complexity Model Reconstruction , 2011, ArXiv.

[86]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[87]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[88]  Donal O'Shea,et al.  Ideals, varieties, and algorithms - an introduction to computational algebraic geometry and commutative algebra (2. ed.) , 1997, Undergraduate texts in mathematics.

[89]  Michael Elad,et al.  A generalized uncertainty principle and sparse representation in pairs of bases , 2002, IEEE Trans. Inf. Theory.

[90]  Christopher Chute,et al.  The Diverse and Exploding Digital Universe , 2011 .

[91]  Jan-Michael Frahm,et al.  Modeling and Recognition of Landmark Image Collections Using Iconic Scene Graphs , 2008, International Journal of Computer Vision.

[92]  D. Donoho,et al.  Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[93]  Matthias W. Seeger,et al.  Using the Nyström Method to Speed Up Kernel Machines , 2000, NIPS.

[94]  Barbara Caputo,et al.  Recognition with local features: the kernel recipe , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[95]  Arkadi Nemirovski,et al.  On sparse representation in pairs of bases , 2003, IEEE Trans. Inf. Theory.

[96]  Nathan Halko,et al.  Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..

[97]  E. Candès,et al.  Compressed sensing and robust recovery of low rank matrices , 2008, 2008 42nd Asilomar Conference on Signals, Systems and Computers.

[98]  Gábor Pataki,et al.  On the Rank of Extreme Matrices in Semidefinite Programs and the Multiplicity of Optimal Eigenvalues , 1998, Math. Oper. Res..

[99]  Olgica Milenkovic,et al.  Subspace Pursuit for Compressive Sensing Signal Reconstruction , 2008, IEEE Transactions on Information Theory.

[100]  Jitendra Malik,et al.  Spectral grouping using the Nystrom method , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[101]  Peter J. Bickel,et al.  Maximum Likelihood Estimation of Intrinsic Dimension , 2004, NIPS.

[102]  Michael I. Jordan,et al.  An Introduction to Variational Methods for Graphical Models , 1999, Machine-mediated learning.

[103]  Theiler Statistical precision of dimension estimators. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[104]  Parikshit Shah,et al.  Iterative projections for signal identification on manifolds: Global recovery guarantees , 2011, 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[105]  Chinmay Hegde,et al.  Signal Recovery on Incoherent Manifolds , 2012, IEEE Transactions on Information Theory.

[106]  Shiqian Ma,et al.  Fixed point and Bregman iterative methods for matrix rank minimization , 2009, Math. Program..

[107]  M. Zwaan An introduction to hilbert space , 1990 .

[108]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[109]  F. Herrmann,et al.  Simply denoise: Wavefield reconstruction via jittered undersampling , 2008 .

[110]  Michael B. Wakin,et al.  The geometry of low-dimensional signal models , 2007 .

[111]  Joel A. Tropp,et al.  Greed is good: algorithmic results for sparse approximation , 2004, IEEE Transactions on Information Theory.

[112]  Ronald R. Coifman,et al.  Data Fusion and Multicue Data Matching by Diffusion Maps , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[113]  Mikhail Belkin,et al.  Using manifold structure for partially labelled classification , 2002, NIPS 2002.

[114]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[115]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[116]  Michael Werman,et al.  A Linear Time Histogram Metric for Improved SIFT Matching , 2008, ECCV.

[117]  Dustin G. Mixon,et al.  Certifying the Restricted Isometry Property is Hard , 2012, IEEE Transactions on Information Theory.

[118]  Emmanuel J. Candès,et al.  Matrix Completion With Noise , 2009, Proceedings of the IEEE.

[119]  Chinmay Hegde,et al.  Random Projections for Manifold Learning , 2007, NIPS.

[120]  Trevor Darrell,et al.  Nearest-Neighbor Methods in Learning and Vision: Theory and Practice (Neural Information Processing) , 2006 .

[121]  Ronald R. Coifman,et al.  Audio-Visual Group Recognition Using Diffusion Maps , 2010, IEEE Transactions on Signal Processing.

[122]  Antonio Torralba,et al.  LabelMe: A Database and Web-Based Tool for Image Annotation , 2008, International Journal of Computer Vision.

[123]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[124]  Kim-Chuan Toh,et al.  Solving semidefinite-quadratic-linear programs using SDPT3 , 2003, Math. Program..

[125]  P. Grassberger,et al.  Measuring the Strangeness of Strange Attractors , 1983 .

[126]  John C. Platt,et al.  Fast Low-Rank Semidefinite Programming for Embedding and Clustering , 2007, AISTATS.

[127]  Robert D. Nowak,et al.  Decentralized compression and predistribution via randomized gossiping , 2006, 2006 5th International Conference on Information Processing in Sensor Networks.

[128]  David S. Broomhead,et al.  The Whitney Reduction Network: A Method for Computing Autoassociative Graphs , 2001, Neural Computation.

[129]  Alexander I. Barvinok,et al.  Problems of distance geometry and convex properties of quadratic maps , 1995, Discret. Comput. Geom..

[130]  Dimitris Achlioptas,et al.  Database-friendly random projections , 2001, PODS.

[131]  Robert D. Nowak,et al.  Active Clustering: Robust and Efficient Hierarchical Clustering using Adaptively Selected Similarities , 2011, AISTATS.

[132]  Andrew Zisserman,et al.  Video Google: a text retrieval approach to object matching in videos , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[133]  Yonina C. Eldar,et al.  Robust Recovery of Signals From a Structured Union of Subspaces , 2008, IEEE Transactions on Information Theory.

[134]  Mike E. Davies,et al.  Sampling Theorems for Signals From the Union of Finite-Dimensional Linear Subspaces , 2009, IEEE Transactions on Information Theory.

[135]  Jim Gray,et al.  2020 Computing: Science in an exponential world , 2006, Nature.

[136]  Jean Ponce,et al.  Accurate, Dense, and Robust Multiview Stereopsis , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[137]  Kenneth L. Clarkson,et al.  Tighter bounds for random projections of manifolds , 2008, SCG '08.

[138]  Stephen P. Boyd,et al.  Rank minimization and applications in system theory , 2004, Proceedings of the 2004 American Control Conference.

[139]  Inderjit S. Dhillon,et al.  Guaranteed Rank Minimization via Singular Value Projection , 2009, NIPS.

[140]  Kim Mohan,et al.  Ring of Steel , 1995 .

[141]  Farid Alizadeh,et al.  Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization , 1995, SIAM J. Optim..

[142]  Fernando A. Quintana,et al.  Nonparametric Bayesian data analysis , 2004 .

[143]  Ahmed M. Elgammal,et al.  Putting local features on a manifold , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[144]  Aswin C. Sankaranarayanan,et al.  SpaRCS: Recovering low-rank and sparse matrices from compressive measurements , 2011, NIPS.

[145]  Siwei Lyu,et al.  Mercer kernels for object recognition with local features , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[146]  Richard G. Baraniuk,et al.  High-resolution navigation on non-differentiable image manifolds , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[147]  Richard G. Baraniuk,et al.  Signal Processing With Compressive Measurements , 2010, IEEE Journal of Selected Topics in Signal Processing.

[148]  U. Grenander,et al.  Ergodic Algorithms on Special Euclidean Groups for ATR , 1997 .

[149]  A. Willsky,et al.  Sparse and low-rank matrix decompositions , 2009 .

[150]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[151]  Zaiwen Wen FIRST-ORDER METHODS FOR SEMIDEFINITE PROGRAMMING , 2009 .

[152]  Sunil Arya,et al.  An optimal algorithm for approximate nearest neighbor searching fixed dimensions , 1998, JACM.

[153]  Deanna Needell,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, ArXiv.

[154]  H. Kuhn The Hungarian method for the assignment problem , 1955 .

[155]  Alfred O. Hero,et al.  Manifold learning visualization of network traffic data , 2005, MineNet '05.

[156]  John Wright,et al.  Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Matrices via Convex Optimization , 2009, NIPS.

[157]  Lee C. Potter,et al.  Civilian vehicle radar data domes , 2010, Defense + Commercial Sensing.

[158]  Balázs Kégl,et al.  Intrinsic Dimension Estimation Using Packing Numbers , 2002, NIPS.

[159]  Richard Baraniuk,et al.  Recovery of Clustered Sparse Signals from Compressive Measurements , 2009 .

[160]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[161]  Chinmay Hegde,et al.  SPIN: Iterative signal recovery on incoherent manifolds , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[162]  D. Broomhead,et al.  Dimensionality Reduction Using Secant-Based Projection Methods: The Induced Dynamics in Projected Systems , 2005 .

[163]  Yi Ma,et al.  The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices , 2010, Journal of structural biology.

[164]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[165]  Leonidas J. Guibas,et al.  The Earth Mover's Distance as a Metric for Image Retrieval , 2000, International Journal of Computer Vision.

[166]  David A. Cox,et al.  Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics) , 2007 .

[167]  H. Nyquist,et al.  Certain Topics in Telegraph Transmission Theory , 1928, Transactions of the American Institute of Electrical Engineers.

[168]  Chinmay Hegde,et al.  Near-isometric linear embeddings of manifolds , 2012, 2012 IEEE Statistical Signal Processing Workshop (SSP).