TopoAct: Visually Exploring the Shape of Activations in Deep Learning

Deep neural networks such as GoogLeNet and ResNet have achieved impressive performance in tasks like image classification. To understand how such performance is achieved, we can probe a trained deep neural network by studying neuron activations, i. e., combinations of neuron firings, at any layer of the network in response to a particular input. With a large number of inputs, we aim to obtain a global view of what neurons detect by studying their activations. We ask the following questions: What is the shape of the activation space? What is the organizational principle behind neuron activations? How are the activations related within a layer and across layers? Applying tools from topological data analysis, we present TopoAct, a visual exploration system to study topological summaries of activation vectors for a single layer as well as the evolution of such summaries across multiple layers. We present exploration scenarios using TopoAct that provide valuable insights towards learned representations of an image classifier. We expect TopoAct to give a topological perspective that enriches the current toolbox of neural network analysis, and to provide a basis for network architecture diagnosis and data anomaly detection.

[1]  Rob Fergus,et al.  Visualizing and Understanding Convolutional Networks , 2013, ECCV.

[2]  Andrea Vedaldi,et al.  Understanding deep image representations by inverting them , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[3]  Daniela Giorgi,et al.  Reeb graphs for shape analysis and applications , 2008, Theor. Comput. Sci..

[4]  Minsuk Kahng,et al.  Visual Analytics in Deep Learning: An Interrogative Survey for the Next Frontiers , 2018, IEEE Transactions on Visualization and Computer Graphics.

[5]  Tim Dwyer,et al.  Scalable, Versatile and Simple Constrained Graph Layout , 2009, Comput. Graph. Forum.

[6]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[7]  Jason Yosinski,et al.  Multifaceted Feature Visualization: Uncovering the Different Types of Features Learned By Each Neuron in Deep Neural Networks , 2016, ArXiv.

[8]  Herbert Edelsbrunner,et al.  Hierarchical Morse—Smale Complexes for Piecewise Linear 2-Manifolds , 2003, Discret. Comput. Geom..

[9]  Deborah Silver,et al.  Feature Visualization , 1994, Scientific Visualization.

[10]  Valerio Pascucci,et al.  Branching and Circular Features in High Dimensional Data , 2011, IEEE Transactions on Visualization and Computer Graphics.

[11]  Yejin Choi,et al.  COMET: Commonsense Transformers for Automatic Knowledge Graph Construction , 2019, ACL.

[12]  J. Rayner,et al.  Spatio-temporal dynamics of Plasmodium falciparum transmission within a spatial unit on the Colombian Pacific Coast , 2020, Scientific Reports.

[13]  Alan Hylton,et al.  Characterizing the Shape of Activation Space in Deep Neural Networks , 2019, 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA).

[14]  Nathan Schneider,et al.  A Hierarchy with, of, and for Preposition Supersenses , 2015, LAW@NAACL-HLT.

[15]  Facundo Mémoli,et al.  Topological Methods for the Analysis of High Dimensional Data Sets and 3D Object Recognition , 2007, PBG@Eurographics.

[16]  Andrew Zisserman,et al.  Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps , 2013, ICLR.

[17]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction , 2018, ArXiv.

[18]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[19]  G. Carlsson,et al.  Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival , 2011, Proceedings of the National Academy of Sciences.

[20]  Bei Wang,et al.  Probabilistic convergence and stability of random mapper graphs , 2019, J. Appl. Comput. Topol..

[21]  Benoît Sagot,et al.  What Does BERT Learn about the Structure of Language? , 2019, ACL.

[22]  Lin Yan,et al.  Homology-Preserving Dimensionality Reduction via Manifold Landmarking and Tearing , 2018, ArXiv.

[23]  Silvia Biasotti,et al.  An overview on properties and efficacy of topological skeletons in shape modeling , 2003, 2003 Shape Modeling International..

[24]  Jack Snoeyink,et al.  Computing contour trees in all dimensions , 2000, SODA '00.

[25]  Steve Oudot,et al.  Two-Tier Mapper, an unbiased topology-based clustering method for enhanced global gene expression analysis , 2019, Bioinform..

[26]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[27]  Valerio Pascucci,et al.  Visualizing High-Dimensional Data: Advances in the Past Decade , 2017, IEEE Transactions on Visualization and Computer Graphics.

[28]  Lawrence Cayton,et al.  Algorithms for manifold learning , 2005 .

[29]  Valerio Pascucci,et al.  Morse-smale complexes for piecewise linear 3-manifolds , 2003, SCG '03.

[30]  Amir Zeldes,et al.  The GUM corpus: creating multilayer resources in the classroom , 2016, Language Resources and Evaluation.

[31]  Ann B. Lee The Nonlinear Statistics of High-Contrast Patches in Natural Images , 2003 .

[32]  Archna Bhatia,et al.  Adposition and Case Supersenses v2.5: Guidelines for English , 2017, 1704.02134.

[33]  Martin Wattenberg,et al.  Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV) , 2017, ICML.

[34]  Hod Lipson,et al.  Understanding Neural Networks Through Deep Visualization , 2015, ArXiv.

[35]  Dipanjan Das,et al.  BERT Rediscovers the Classical NLP Pipeline , 2019, ACL.

[36]  Bei Wang,et al.  Convergence between Categorical Representations of Reeb Space and Mapper , 2015, SoCG.

[37]  Iz Beltagy,et al.  SciBERT: A Pretrained Language Model for Scientific Text , 2019, EMNLP.

[38]  P. Alexandroff,et al.  Über den allgemeinen Dimensionsbegriff und seine Beziehungen zur elementaren geometrischen Anschauung , 1928 .

[39]  Thomas Wolf,et al.  HuggingFace's Transformers: State-of-the-art Natural Language Processing , 2019, ArXiv.

[40]  Jaewoo Kang,et al.  BioBERT: a pre-trained biomedical language representation model for biomedical text mining , 2019, Bioinform..

[41]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[42]  Jason K. Sa,et al.  Distinct genomic profile and specific targeted drug responses in adult cerebellar glioblastoma , 2018, Neuro-oncology.

[43]  C. Olah,et al.  Activation Atlas , 2019, Distill.

[44]  Nithin Chalapathi,et al.  Mapper Interactive: A Scalable, Extendable, and Interactive Toolbox for the Visual Exploration of High-Dimensional Data , 2021, 2021 IEEE 14th Pacific Visualization Symposium (PacificVis).

[45]  Arvind Satyanarayan,et al.  The Building Blocks of Interpretability , 2018 .

[46]  Songting Shi,et al.  Visualizing Data using GTSNE , 2021, ArXiv.

[47]  Bernd Hamann,et al.  Measuring the Distance Between Merge Trees , 2014, Topological Methods in Data Analysis and Visualization.

[48]  Andrea Vedaldi,et al.  Visualizing Deep Convolutional Neural Networks Using Natural Pre-images , 2015, International Journal of Computer Vision.

[49]  Alice Patania,et al.  Topological analysis of data , 2017, EPJ Data Science.

[50]  Shengxiang Xia A topological analysis of high-contrast patches in natural images , 2016 .

[51]  Paul Rosen,et al.  Visual Detection of Structural Changes in Time-Varying Graphs Using Persistent Homology , 2017, 2018 IEEE Pacific Visualization Symposium (PacificVis).

[52]  Maxime Gabella,et al.  Topology of Learning in Feedforward Neural Networks , 2020, IEEE Transactions on Neural Networks and Learning Systems.

[53]  Olaf Sporns,et al.  Towards a new approach to reveal dynamical organization of the brain using topological data analysis , 2018, Nature Communications.

[54]  Duen Horng Chau,et al.  Summit: Scaling Deep Learning Interpretability by Visualizing Activation and Attribution Summarizations , 2019, IEEE Transactions on Visualization and Computer Graphics.

[55]  Marc'Aurelio Ranzato,et al.  Building high-level features using large scale unsupervised learning , 2011, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[56]  Steve Oudot,et al.  Statistical Analysis and Parameter Selection for Mapper , 2017, J. Mach. Learn. Res..

[57]  Alex Krizhevsky,et al.  Learning Multiple Layers of Features from Tiny Images , 2009 .

[58]  Vin de Silva,et al.  On the Local Behavior of Spaces of Natural Images , 2007, International Journal of Computer Vision.

[59]  Samuel Gerber,et al.  Data Analysis with the Morse-Smale Complex: The msr Package for R , 2012 .

[60]  Qiang Chen,et al.  Network In Network , 2013, ICLR.

[61]  Valerio Pascucci,et al.  Local, smooth, and consistent Jacobi set simplification , 2013, Comput. Geom..

[62]  Herbert Edelsbrunner,et al.  Reeb spaces of piecewise linear mappings , 2008, SCG '08.

[63]  Olaf Sporns,et al.  Generating dynamical neuroimaging spatiotemporal representations (DyNeuSR) using topological data analysis , 2019, Network Neuroscience.

[64]  Joseph O Deasy,et al.  Robust and interpretable PAM50 reclassification exhibits survival advantage for myoepithelial and immune phenotypes , 2019, npj Breast Cancer.

[65]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection , 2018, J. Open Source Softw..

[66]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[67]  Paul Rosen,et al.  Persistent Homology Guided Force-Directed Graph Layouts , 2017, IEEE Transactions on Visualization and Computer Graphics.

[68]  Vin de Silva,et al.  Persistent Cohomology and Circular Coordinates , 2009, SCG '09.

[69]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[70]  Pascal Vincent,et al.  Visualizing Higher-Layer Features of a Deep Network , 2009 .

[71]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).