Markov chains in smooth Banach spaces and Gromov hyperbolic metric spaces

A metric space X has Markov type 2, if for any reversible flnite-state Markov chain fZtg (with Z0 chosen according to the stationary distribution) and any map f from the state space to X, the distance Dt from f(Z0) to f(Zt) satisfles E(D 2) • K 2 tE(D 2) for some K = K(X) 2) has Markov type 2; this proves a conjecture of Ball. We also show that trees, hyperbolic groups and simply connected Riemannian manifolds of pinched negative curvature have Markov type 2. Our results are applied to settle several conjectures on Lipschitz extensions and embeddings. In particular, we answer a question posed by Johnson and Lindenstrauss in 1982, by showing that for 1 < q < 2 < p < 1, any Lipschitz mapping from a subset of Lp to Lq has a Lipschitz extension deflned on all of Lp.

[1]  H. Hanche-Olsen On the uniform convexity of L^p , 2005, math/0502021.

[2]  Jussi Väisälä,et al.  Gromov hyperbolic spaces , 2005 .

[3]  James R. Lee,et al.  Extending Lipschitz functions via random metric partitions , 2005 .

[4]  Robert Krauthgamer,et al.  Measured descent: a new embedding method for finite metrics , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[5]  James R. Lee,et al.  Metric Structures in L1: Dimension, Snowflakes, and Average Distortion , 2004, LATIN.

[6]  A. Naor,et al.  Embedding the diamond graph in Lp and dimension reduction in L1 , 2004, math/0407520.

[7]  V. Schroeder,et al.  Embedding of Hyperbolic Spaces in the Product of Trees , 2003, math/0311524.

[8]  Nathan Linial,et al.  On metric ramsey-type phenomena , 2003, STOC '03.

[9]  P. Assouad Plongements lipschitziens dans Rn , 2003 .

[10]  B. Maurey,et al.  Chapter 30 - Type, Cotype and K-Convexity , 2003 .

[11]  J. Lindenstrauss,et al.  Lipschitz Quotients from Metric Trees and from Banach Spaces Containing ℓ1 , 2002 .

[12]  Nathan Linial,et al.  Girth and euclidean distortion , 2002, STOC '02.

[13]  G. Schechtman,et al.  Remarks on non linear type and Pisier's inequality , 2002 .

[14]  Nathan Linial,et al.  Girth and Euclidean distortion , 2002 .

[15]  Assaf Naor,et al.  A phase transition phenomenon between the isometric and isomorphic extension problems for Hölder functions between Lp spaces , 2001 .

[16]  U. Lang,et al.  Bilipschitz Embeddings of Metric Spaces into Space Forms , 2001 .

[17]  David Preiss GEOMETRIC NONLINEAR FUNCTIONAL ANALYSIS, Volume 1 (American Mathematical Society Colloquium Publications 48) By Y OAV B ENYAMINI and J ORAM L INDENSTRAUSS : 488 pp., US$65.00, ISBN 0-8218-0835-4 (American Mathematical Society, Providence, RI, 2000). , 2001 .

[18]  D. Burkholder Chapter 6 - Martingales and Singular Integrals in Banach Spaces , 2001 .

[19]  J. Lindenstrauss,et al.  Handbook of geometry of Banach spaces , 2001 .

[20]  J. Heinonen Lectures on Analysis on Metric Spaces , 2000 .

[21]  Oded Schramm,et al.  Embeddings of Gromov Hyperbolic Spaces , 2000 .

[22]  T. Laakso Ahlfors Q-regular spaces with arbitrary Q > 1 admitting weak Poincaré inequality , 2000 .

[23]  J. Lindenstrauss,et al.  Geometric Nonlinear Functional Analysis , 1999 .

[24]  M. Bridson,et al.  Metric Spaces of Non-Positive Curvature , 1999 .

[25]  M. Gromov Metric Structures for Riemannian and Non-Riemannian Spaces , 1999 .

[26]  R. Latala Estimation of moments of sums of independent real random variables , 1997 .

[27]  J. Diestel,et al.  Absolutely Summing Operators , 1995 .

[28]  K. Ball,et al.  Sharp uniform convexity and smoothness inequalities for trace norms , 1994 .

[29]  Terry Lyons,et al.  Decomposition of Dirichlet Processes and its Application , 1994 .

[30]  J. Eschenburg Comparison Theorems in Riemannian Geometry , 1994 .

[31]  Keith Ball,et al.  Markov chains, Riesz transforms and Lipschitz maps , 1992 .

[32]  P. Wojtaszczyk Banach Spaces For Analysts: Preface , 1991 .

[33]  R. Durrett Probability: Theory and Examples , 1993 .

[34]  É. Ghys,et al.  Sur Les Groupes Hyperboliques D'Apres Mikhael Gromov , 1990 .

[35]  G. Pisier The volume of convex bodies and Banach space geometry , 1989 .

[36]  G. Pisier,et al.  Random series in the real interpolation spaces between the spaces v p , 1987 .

[37]  G. Pisier Probabilistic methods in the geometry of Banach spaces , 1986 .

[38]  Jean Bourgain,et al.  On type of metric spaces , 1986 .

[39]  V. Milman,et al.  Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .

[40]  Peter B. Shalen,et al.  Valuations, Trees, and Degenerations of Hyperbolic Structures, I , 1984 .

[41]  G. Pisier,et al.  Characterizations of almost surely continuousp-stable random Fourier series and strongly stationary processes , 1984 .

[42]  W. B. Johnson,et al.  Extensions of Lipschitz mappings into Hilbert space , 1984 .

[43]  Gilles Pisier,et al.  Holomorphic semi-groups and the geometry of Banach spaces , 1982 .

[44]  Length Functions and Free Products with Amalgamation of Groups , 1981 .

[45]  Nguyễn Tố Như,et al.  Lipschitz extensions and Lipschitz retractions in metric spaces , 1981 .

[46]  R. C. James Nonreflexive spaces of type 2 , 1978 .

[47]  P. Enflo On infinite-dimensional topological groups , 1978 .

[48]  T. Figiel On the moduli of convexity and smoothness , 1976 .

[49]  G. Pisier,et al.  Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach , 1976 .

[50]  G. Pisier Martingales with values in uniformly convex spaces , 1975 .

[51]  J. Pitman One-dimensional Brownian motion and the three-dimensional Bessel process , 1974, Advances in Applied Probability.

[52]  J. Wells,et al.  Embeddings and Extensions in Analysis , 1975 .

[53]  J. Hoffmann-jorgensen Sums of independent Banach space valued random variables , 1974 .

[54]  Type et cotype dans les espaces munis de structures locales inconditionnelles , 1974 .

[55]  Joram Lindenstrauss,et al.  Classical Banach spaces , 1973 .

[56]  D. Vere-Jones Markov Chains , 1972, Nature.

[57]  Stanisław Kwapień,et al.  Isomorphic characterizations of inner product spaces by orthogonal series with vector valued coefficients , 1972 .

[58]  On Banach spaces X for which $Π_{2}(ℒ_{∞},X)=B(ℒ_{∞},X)$ , 1972 .

[59]  P. Enflo,et al.  Uniform structures and square roots in topological groups , 1970 .

[60]  P. Enflo Uniform structures and square roots in topological groups , 1970 .

[61]  Per Enflo Topological Groups in Which Multiplication on One Side is Differentiable or Linear. , 1969 .

[62]  Joram Lindenstrauss On the modulus of smoothness and divergent series in Banach spaces. , 1963 .

[63]  O. Hanner On the uniform convexity ofLp andlp , 1956 .

[64]  M. D. Kirszbraun Über die zusammenziehende und Lipschitzsche Transformationen , 1934 .