Understanding structural adaptability: a reactant informatics approach to experiment design

The structural and electronic adaptability ranges of a [VO(SeO3)(HSeO3)] framework found in organically templated vanadium selenites were determined using a three step approach, informed by cheminformatics descriptors, involving (i) the extraction of the most important reaction parameters from historical reaction data, (ii) a fractional factorial design on those parameters to better explore chemical space and (iii) decision tree construction on organic molecular properties to determine the factors governing framework formation. This process enabled the elucidation of both the structural and electronic adaptability ranges and provided the context to extract chemical understanding from the structural features that give rise to these respective ranges. This work resulted in the synthesis and structural determination of five new compounds.

[1]  Pierre M. Petroff,et al.  Generalized synthesis of periodic surfactant/inorganic composite materials , 1994, Nature.

[2]  H. Nakano,et al.  Synthesis and structural characterization of a new series of vanadoselenites, [Se(x)V(4-x)O(12-x)](4-x)- (x=1,2). , 2001, Inorganic chemistry.

[3]  Matthias Zeller,et al.  Formation principles for vanadium selenites: the role of pH on product composition. , 2014, Inorganic chemistry.

[4]  Krishna Rajan,et al.  Materials Informatics: The Materials ``Gene'' and Big Data , 2015 .

[5]  Jonathan Kenneth Bunn,et al.  Development of an Optimization Procedure for Magnetron-Sputtered Thin Films to Facilitate Combinatorial Materials Research , 2016 .

[6]  Jonathan Grizou,et al.  Human versus Robots in the Discovery and Crystallization of Gigantic Polyoxometalates , 2017, Angewandte Chemie.

[7]  S Natarajan,et al.  Aufbau principle of complex open-framework structures of metal phosphates with different dimensionalities. , 2001, Accounts of chemical research.

[8]  Alexander J. Norquist,et al.  Beyond Charge Density Matching: The Role of C–H···O Interactions in the Formation of Templated Vanadium Tellurites , 2011 .

[9]  Guanghua Li,et al.  Hydrothermal syntheses and structures of two novel vanadium selenites, {[VO(OH)(H2O)](SeO3)}4·2H2O and (H3NCH2CH2NH3)[(VO)(SeO3)2] , 2003 .

[10]  Krishna Rajan,et al.  Combinatorial and high-throughput screening of materials libraries: review of state of the art. , 2011, ACS combinatorial science.

[11]  Stefanie Jegelka,et al.  Virtual screening of inorganic materials synthesis parameters with deep learning , 2017, npj Computational Materials.

[12]  Dermot O'Hare,et al.  Organically templated uranium(VI) sulfates: understanding phase stability using composition space , 2003 .

[13]  Amitava Choudhury,et al.  Organically templated vanadyl selenites with layered structures. , 2003, Inorganic chemistry.

[14]  Piotr Dittwald,et al.  Computer-Assisted Synthetic Planning: The End of the Beginning. , 2016, Angewandte Chemie.

[15]  Matthias Zeller,et al.  The role of stereoactive lone pairs in templated vanadium tellurite charge density matching. , 2010, Inorganic chemistry.

[16]  Matthias Zeller,et al.  Role of noncovalent interactions in vanadium tellurite chain connectivities. , 2015, Inorganic chemistry.

[17]  Dermot O'Hare,et al.  Structural diversity in organically templated uranium sulfates , 2003 .

[18]  Paul Raccuglia,et al.  Machine-learning-assisted materials discovery using failed experiments , 2016, Nature.

[19]  Amitava Choudhury,et al.  Transformations of low-dimensional zinc phosphates to complex open-framework structures. Part 1: zero-dimensional to one-, two- and three-dimensional structures , 2001 .

[20]  Gérard Férey,et al.  Oxyfluorinated microporous compounds ULM-n: chemical parameters, structures and a proposed mechanism for their molecular tectonics , 1995 .

[21]  Daniel J. Griffin,et al.  Data-Driven Modeling and Dynamic Programming Applied to Batch Cooling Crystallization , 2016 .

[22]  Alexander J. Norquist,et al.  Composition space analysis of templated molybdates , 2007 .

[23]  Q. Huo,et al.  Cooperative Formation of Inorganic-Organic Interfaces in the Synthesis of Silicate Mesostructures , 1993, Science.

[24]  Guanghua Li,et al.  Hydrothermal synthesis and structural characterization of a new layered vanadium selenite: (C4N2H12)0.5[(VO)2(H2O)2(SeO3)2(HSeO3)] , 2005 .

[25]  P. Halasyamani,et al.  Directed synthesis of noncentrosymmetric molybdates using composition space analysis. , 2006, Inorganic chemistry.

[26]  A. McCallum,et al.  Materials Synthesis Insights from Scientific Literature via Text Extraction and Machine Learning , 2017 .

[27]  Alexander J. Norquist,et al.  Formation Principles for Templated Vanadium Selenite Oxalates , 2013 .

[28]  Desmond J Hubbard,et al.  Synthetic approaches for noncentrosymmetric molybdates. , 2008, Inorganic chemistry.

[29]  Ijaz A Rauf Applied Statistical Design of Experiments: Applications in Natural Sciences , 2015 .

[30]  Kenneth R. Poeppelmeier,et al.  Crystal growth in aqueous hydrofluoric acid and (HF)x · pyridine solutions: syntheses and crystal structures of [Ni(H2O)6]2+[MF6]2- (M = Ti, Zr, Hf) and Ni3(py)12F6 · 7H2O , 1995 .

[31]  Matthias Zeller,et al.  [R-C{sub 7}H{sub 16}N{sub 2}][V{sub 2}Te{sub 2}O{sub 10}] and [S-C{sub 7}H{sub 16}N{sub 2}][V{sub 2}Te{sub 2}O{sub 10}]; new polar templated vanadium tellurite enantiomers , 2011 .

[32]  Tian-jun Lou,et al.  Synthesis and crystal structures of two inorganic–organic hybrid vanadium selenites with layered structures: (DABCOH2)[(VO2)(SeO3)]2·1.25H2O and (pipeH2)[(VO)2(C2O4)(SeO3)2] , 2009 .

[33]  Rahul Rao,et al.  Autonomy in materials research: a case study in carbon nanotube growth , 2016 .

[34]  Alexander J Norquist,et al.  [Mo16O53F2]12-: a new polyoxofluoromolybdate anion. , 2007, Inorganic chemistry.

[35]  S. Suram,et al.  Generating information-rich high-throughput experimental materials genomes using functional clustering via multitree genetic programming and information theory. , 2015, ACS combinatorial science.

[36]  Krishna Rajan,et al.  Information Science for Materials Discovery and Design , 2016 .

[37]  Alexander J. Norquist,et al.  Steric-Induced Layer Flection in Templated Vanadium Tellurites , 2013 .

[38]  Giovanni Luca Cascarano,et al.  Completion and refinement of crystal structures with SIR92 , 1993 .

[39]  Michael O'Keeffe,et al.  Bond-valence parameters for solids , 1991 .

[40]  Alexander J. Norquist,et al.  Understanding an Order-Disorder Phase Transition in Ionothermally Synthesized Gallium Phosphates , 2011 .

[41]  B. Engelen,et al.  Zur Kenntnis der Hydrate M(HSeO3)2 · 4H2O (M = Mg, Co, Ni, Zn). Röntgenstrukturanalytische, schwingungsspektroskopische und thermoanalytische Untersuchungen , 1995 .

[42]  Matthias Zeller,et al.  Role of hydrogen-bonding in the formation of polar achiral and nonpolar chiral vanadium selenite frameworks. , 2012, Inorganic chemistry.

[43]  Alexander J. Norquist,et al.  [C5H14N2][(MoO3)3(SO4)]·H2O: Sulfated α-Molybdena Chains , 2004 .

[44]  Ichiro Takeuchi,et al.  Fulfilling the promise of the materials genome initiative with high-throughput experimental methodologies , 2017 .

[45]  Jing Xu,et al.  Synthesis and Characterization of a New Layered Vanadium Selenite: β-(H3NCH2CH2NH3) [(VO)(SeO3)2]. , 2004 .

[46]  Alexander J. Norquist,et al.  Composition Space Diagrams for Mixed Transition Metal Oxide Fluorides. , 1998, Inorganic chemistry.

[47]  Alexander J. Norquist,et al.  Charge density matching in templated molybdates , 2009 .

[48]  Hongfang Yang,et al.  A novel vanadyl selenite templated by organic salt: [(VO)(H2O)2(SeO3)]2[(H2pipe)SO4] , 2004 .

[49]  Gérard Férey,et al.  Microporous Solids: From Organically Templated Inorganic Skeletons to Hybrid Frameworks...Ecumenism in Chemistry , 2001 .

[50]  Richard I. Cooper,et al.  CRYSTALS version 12: software for guided crystal structure analysis , 2003 .

[51]  John M. Gregoire,et al.  Perspective: Composition–structure–property mapping in high-throughput experiments: Turning data into knowledge , 2016 .

[52]  Bradley F. Chmelka,et al.  Phase Transitions in Mesostructured Silica/Surfactant Composites: Surfactant Packing and the Role of Charge Density Matching , 2001 .

[53]  Xinyi Gong,et al.  Process-Structure Linkages Using a Data Science Approach: Application to Simulated Additive Manufacturing Data , 2017, Integrating Materials and Manufacturing Innovation.

[54]  Yue Liu,et al.  Materials discovery and design using machine learning , 2017 .

[55]  Alexander J. Norquist,et al.  Directed Synthesis of Noncentrosymmetric Molybdates , 2005 .

[56]  S. Ong,et al.  The thermodynamic scale of inorganic crystalline metastability , 2016, Science Advances.

[57]  Katherine C. Elbert,et al.  Probing structural adaptability in templated vanadium selenites , 2016 .

[58]  Pedro Amorós,et al.  Interface Charge Density Matching as Driving Force for New Mesostructured Oxovanadium Phosphates with Hexagonal Structure, [CTA]xVOPO4·zH2O , 1999 .

[59]  Christopher M Wolverton,et al.  First‐Principles Determination of Multicomponent Hydride Phase Diagrams: Application to the Li‐Mg‐N‐H System , 2007 .

[60]  Samuel M Blau,et al.  Noncentrosymmetry in new templated gallium fluorophosphates. , 2009, Inorganic chemistry.

[61]  I. D. Brown,et al.  Bond‐valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database , 1985 .

[62]  Alexander J. Norquist,et al.  [R-C7H16N2][V2Te2O10] and [S-C7H16N2][V2Te2O10]; new polar templated vanadium tellurite enantiomers , 2011 .

[63]  Ivan Němec,et al.  Crystal Structure and Infrared Absorption Spectra of Magnesium(II) Hydrogen Selenite Tetrahydrate, Mg(HSeO3)2·4H2O , 1996 .