Topological methods for the existence of a rainbow matching

Abstract We present recent results regarding rainbow matchings in bipartite graphs. Using topological methods we address a known conjecture of Stein and show that if K n , n is partitioned into n sets of size n, then a partial rainbow matching of size 2n/3 exists. We generalize a result of Cameron and Wanless and show that for any n matchings of size n in a bipartite graph with 2n vertices there exists a full matching intersecting each matching at most twice. We show that any n matchings of size approximately 3n/2 have a rainbow matching of size n. Finally, we show the uniqueness of the extreme case for a theorem of Drisko and provide a generalization of Drisko's theorem.

[1]  Peter W. Shor,et al.  A lower bound for the length of a partial transversal in a Latin square , 2008, J. Comb. Theory, Ser. A.

[2]  Roy Meshulam,et al.  Domination numbers and homology , 2003, J. Comb. Theory A.

[3]  Gábor N. Sárközy,et al.  Rainbow matchings in bipartite multigraphs , 2015, Period. Math. Hung..

[4]  Ron Aharoni,et al.  Representation of Large Matchings in Bipartite Graphs , 2017, SIAM J. Discret. Math..

[5]  Ron Aharoni,et al.  Degree Conditions for Matchability in 3-Partite Hypergraphs , 2018, J. Graph Theory.

[6]  Arthur A. Drisko Transversals in Row-Latin Rectangles , 1998, J. Comb. Theory, Ser. A.

[7]  Jerrold R. Griggs,et al.  Journal of Combinatorial Theory, Series A , 2011 .

[8]  Ron Aharoni,et al.  Rainbow Matchings in r-Partite r-Graphs , 2009, Electron. J. Comb..

[9]  Ron Aharoni,et al.  Uniqueness of the extreme cases in theorems of Drisko and Erdős-Ginzburg-Ziv , 2018, Eur. J. Comb..

[10]  Ron Aharoni,et al.  On a conjecture of Stein , 2016, 1605.01982.

[11]  Dennis Clemens,et al.  An Improved Bound on the Sizes of Matchings Guaranteeing a Rainbow Matching , 2016, Electron. J. Comb..

[12]  Andries E. Brouwer,et al.  A lower bound for the length of partial transversals in a latin square , 1978 .

[13]  Penny E. Haxell On the Strong Chromatic Number , 2004, Comb. Probab. Comput..

[14]  Ron Aharoni,et al.  Independent systems of representatives in weighted graphs , 2007, Comb..

[15]  David E. Woolbright An n x n Latin Square Has a Transversal with at Least n - square root of n Distinct Symbols , 1978, J. Comb. Theory, Ser. A.

[16]  Pooya Hatami,et al.  A lower bound for the length of a partial transversal in a Latin square , 2008, J. Comb. Theory, Ser. A.

[17]  S. Stein TRANSVERSALS OF LATIN SQUARES AND THEIR GENERALIZATIONS , 1975 .

[18]  Peter J. Cameron,et al.  Covering radius for sets of permutations , 2005, Discret. Math..

[19]  Ron Aharoni,et al.  Hall's theorem for hypergraphs , 2000, J. Graph Theory.

[20]  Leslie Hogben,et al.  Combinatorial Matrix Theory , 2013 .