Greatly Enhanced Merger Rates of Compact-object Binaries in Non-spherical Nuclear Star Clusters

The Milky Way and a significant fraction of galaxies are observed to host a central massive black hole (MBH) embedded in a non-spherical nuclear star cluster. We study the secular orbital evolution of compact-object binaries in these environments and characterize the excitation of extremely large eccentricities that can lead to mergers by gravitational radiation. We find that the eccentricity excitation occurs most efficiently when the nodal precession timescale of the binary’s orbit around the MBH due to the non-spherical cluster becomes comparable (within a factor of ∼10) to the timescale on which the binary is torqued by the MBH due to the Lidov–Kozai (LK) mechanism. We show that in this regime the perturbations due to the cluster increase the fraction of systems that reach extreme eccentricities ( ) by a factor of ∼10–100 compared to the idealized case of a spherical cluster, increasing the merger rates of compact objects by a similar factor. We identify two main channels that lead to this extreme eccentricity excitation: (i) chaotic diffusion of the eccentricities due to resonance overlap; (ii) cluster-driven variations of the mutual inclinations between the binary orbit and its center-of-mass orbit around the MBH, which can intensify the LK oscillations. We estimate that our mechanism can produce BH–BH and BH–neutron star binary merger rates of up to and , respectively. Thus, we propose the cluster-enhanced LK mechanism as a new channel for the merger of compact-object binaries, competing with scenarios that invoke isolated binary evolution or dynamical formation in globular clusters.

[1]  M. Mapelli,et al.  Supernova kicks and dynamics of compact remnants in the Galactic Centre , 2017, 1704.05850.

[2]  F. Antonini,et al.  Binary Black Hole Mergers from Field Triples: Properties, Rates, and the Impact of Stellar Evolution , 2017, 1703.06614.

[3]  Y. Levin,et al.  Stellar binaries in galactic nuclei: tidally stimulated mergers followed by tidal disruptions , 2017, 1703.05796.

[4]  B. Liu,et al.  Modified evolution of stellar binaries from supermassive black hole binaries , 2017, 1701.04580.

[5]  N. Neumayer,et al.  Triaxial orbit-based modelling of the Milky Way nuclear star cluster , 2016, 1701.01583.

[6]  F. Antonini,et al.  Dynamical Friction and the Evolution of Supermassive Black Hole Binaries: The Final Hundred-parsec Problem , 2016, 1611.06573.

[7]  D. Muñoz,et al.  PLANETARY ENGULFMENT AS A TRIGGER FOR WHITE DWARF POLLUTION , 2016, 1607.04891.

[8]  Frederic A. Rasio,et al.  MERGING BLACK HOLE BINARIES IN GALACTIC NUCLEI: IMPLICATIONS FOR ADVANCED-LIGO DETECTIONS , 2016, 1606.04889.

[9]  D. Richardson,et al.  THE ROLE OF THE KOZAI–LIDOV MECHANISM IN BLACK HOLE BINARY MERGERS IN GALACTIC CENTERS , 2016, 1604.04948.

[10]  D. Reitze The Observation of Gravitational Waves from a Binary Black Hole Merger , 2016 .

[11]  V. Kalogera,et al.  ORBITAL EVOLUTION OF MASS-TRANSFERRING ECCENTRIC BINARY SYSTEMS. I. PHASE-DEPENDENT EVOLUTION , 2016, 1603.06592.

[12]  V. Kalogera,et al.  ORBITAL EVOLUTION OF MASS-TRANSFERRING ECCENTRIC BINARY SYSTEMS. II. SECULAR EVOLUTION , 2016, 1603.06593.

[13]  A. Ghez,et al.  Merging Binaries in the Galactic Center: The eccentric Kozai-Lidov mechanism with stellar evolution , 2016, 1603.02709.

[14]  Robert W. Taylor,et al.  ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914 , 2016 .

[15]  B. A. Boom,et al.  THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914 , 2016, 1602.03842.

[16]  Frederic A. Rasio,et al.  Binary Black Hole Mergers from Globular Clusters: Masses, Merger Rates, and the Impact of Stellar Evolution , 2016, 1602.02444.

[17]  S. Naoz The Eccentric Kozai-Lidov Effect and Its Applications , 2016, 1601.07175.

[18]  N. Neumayer,et al.  Masses and scaling relations for nuclear star clusters, and their co-existence with central black holes , 2016, 1601.02613.

[19]  A. Seth,et al.  KMOS view of the Galactic Centre I: Young Stars are centrally concentrated , 2015, 1509.04707.

[20]  J. Silk,et al.  THE COEVOLUTION OF NUCLEAR STAR CLUSTERS, MASSIVE BLACK HOLES, AND THEIR HOST GALAXIES , 2015, 1506.02050.

[21]  J. Silk,et al.  THE IMPRINT OF MASSIVE BLACK HOLE MERGERS ON THE CORRELATION BETWEEN NUCLEAR STAR CLUSTERS AND THEIR HOST GALAXIES , 2015, 1504.04033.

[22]  Daniel J. Carson,et al.  THE STRUCTURE OF NUCLEAR STAR CLUSTERS IN NEARBY LATE-TYPE SPIRAL GALAXIES FROM HUBBLE SPACE TELESCOPE WIDE FIELD CAMERA 3 IMAGING , 2015, The Astronomical Journal.

[23]  H. Perets,et al.  Secular dynamics of hierarchical quadruple systems: the case of a triple system orbited by a fourth body , 2014, 1412.3115.

[24]  B. Liu,et al.  Suppression of extreme orbital evolution in triple systems with short-range forces , 2014, 1409.6717.

[25]  H. Ferguson,et al.  The HST/ACS Coma Cluster Survey. X. Nuclear star clusters in low-mass early-type galaxies: scaling relations , 2014, 1409.4766.

[26]  D. Dale,et al.  TOWARD COMPLETE STATISTICS OF MASSIVE BINARY STARS: PENULTIMATE RESULTS FROM THE CYGNUS OB2 RADIAL VELOCITY SURVEY , 2014, 1406.6655.

[27]  D. Fabrycky,et al.  COMPACT PLANETARY SYSTEMS PERTURBED BY AN INCLINED COMPANION. I. VECTORIAL REPRESENTATION OF THE SECULAR MODEL , 2014, 1405.7632.

[28]  H. Perets,et al.  SECULAR EVOLUTION OF BINARIES NEAR MASSIVE BLACK HOLES: FORMATION OF COMPACT BINARIES, MERGER/COLLISION PRODUCTS AND G2-LIKE OBJECTS , 2014, 1405.6029.

[29]  A. Loeb,et al.  CHAOS IN THE TEST PARTICLE ECCENTRIC KOZAI–LIDOV MECHANISM , 2014, 1405.0494.

[30]  C. Petrovich STEADY-STATE PLANET MIGRATION BY THE KOZAI–LIDOV MECHANISM IN STELLAR BINARIES , 2014, 1405.0280.

[31]  I. Georgiev,et al.  Nuclear star clusters in 228 spiral galaxies in the HST/WFPC2 archive: catalogue and comparison to other stellar systems , 2014, 1404.5956.

[32]  N. Neumayer,et al.  Surface brightness profile of the Milky Way’s nuclear star cluster , 2014, 1403.6657.

[33]  Berkeley,et al.  The old Nuclear Star Cluster in the Milky Way , 2014, 1403.5266.

[34]  Jessica R. Lu,et al.  PROPERTIES OF THE REMNANT CLOCKWISE DISK OF YOUNG STARS IN THE GALACTIC CENTER , 2014, 1401.7354.

[35]  R. Genzel,et al.  THE NUCLEAR CLUSTER OF THE MILKY WAY: TOTAL MASS AND LUMINOSITY , 2013, Proceedings of the International Astronomical Union.

[36]  B. Shappee,et al.  Rapid Eccentricity Oscillations and the Mergers of Compact Objects in Hierarchical Triples , 2013, 1308.5682.

[37]  Norman Murray,et al.  BLACK HOLE TRIPLE DYNAMICS: A BREAKDOWN OF THE ORBIT AVERAGE APPROXIMATION AND IMPLICATIONS FOR GRAVITATIONAL WAVE DETECTIONS , 2013, 1308.3674.

[38]  T. Alexander,et al.  MASSIVE BINARIES IN THE VICINITY OF Sgr A* , 2013, 1307.7996.

[39]  D. Merritt Dynamics and Evolution of Galactic Nuclei , 2013 .

[40]  B. Shappee,et al.  Greatly enhanced eccentricity oscillations in quadruple systems composed of two binaries: implications for stars, planets and transients , 2013, 1304.3152.

[41]  Harvard-Smithsonian CfA,et al.  Stellar Multiplicity , 2013, 1303.3028.

[42]  Jessica R. Lu,et al.  STELLAR POPULATIONS IN THE CENTRAL 0.5 pc OF THE GALAXY. II. THE INITIAL MASS FUNCTION , 2013, 1301.0540.

[43]  Astrophysics,et al.  THE ACS FORNAX CLUSTER SURVEY. VI. THE NUCLEI OF EARLY-TYPE GALAXIES IN THE FORNAX CLUSTER , 2012, 1208.0338.

[44]  C. Evans,et al.  Binary Interaction Dominates the Evolution of Massive Stars , 2012, Science.

[45]  H. Perets,et al.  SECULAR EVOLUTION OF COMPACT BINARIES NEAR MASSIVE BLACK HOLES: GRAVITATIONAL WAVE SOURCES AND OTHER EXOTICA , 2012, 1203.2938.

[46]  I. Mandel,et al.  DOUBLE COMPACT OBJECTS. I. THE SIGNIFICANCE OF THE COMMON ENVELOPE ON MERGER RATES , 2012, 1202.4901.

[47]  A. Sternberg,et al.  THE STAR FORMATION HISTORY OF THE MILKY WAY'S NUCLEAR STAR CLUSTER , 2011, 1110.1633.

[48]  W. Farr,et al.  Secular Dynamics in Hierarchical Three-Body Systems , 2011, 1107.2414.

[49]  S. Naoz,et al.  THE ECCENTRIC KOZAI MECHANISM FOR A TEST PARTICLE , 2011, 1106.3329.

[50]  S. Dong,et al.  Long-term cycling of Kozai-Lidov cycles: extreme eccentricities and inclinations excited by a distant eccentric perturber. , 2011, Physical review letters.

[51]  M. Hilker,et al.  Families of dynamically hot stellar systems over 10 orders of magnitude in mass , 2011, 1103.1628.

[52]  C. Will,et al.  Stellar Dynamics of Extreme-Mass-Ratio Inspirals , 2011, 1102.3180.

[53]  D. Merritt,et al.  TIDAL BREAKUP OF BINARY STARS AT THE GALACTIC CENTER. II. HYDRODYNAMIC SIMULATIONS , 2010, 1008.5369.

[54]  S. Tremaine,et al.  Resonant relaxation and the warp of the stellar disc in the Galactic Centre , 2010, 1006.0001.

[55]  D. Merritt,et al.  ORBITS AROUND BLACK HOLES IN TRIAXIAL NUCLEI , 2010, 1005.0040.

[56]  A. Acker,et al.  A systematic study of variability among OB-stars based on HIPPARCOS photometry , 2009 .

[57]  P. Kroupa,et al.  Constraining the initial mass function of stars in the Galactic Centre , 2009, 0910.4960.

[58]  J. Faber,et al.  TIDAL BREAKUP OF BINARY STARS AT THE GALACTIC CENTER AND ITS CONSEQUENCES , 2009, 0909.1959.

[59]  T. Paumard,et al.  AN EXTREMELY TOP-HEAVY INITIAL MASS FUNCTION IN THE GALACTIC CENTER STELLAR DISKS , 2009, 0908.2177.

[60]  S. Tremaine,et al.  Galactic Dynamics: Second Edition , 2008 .

[61]  R. Genzel,et al.  MONITORING STELLAR ORBITS AROUND THE MASSIVE BLACK HOLE IN THE GALACTIC CENTER , 2008, 0810.4674.

[62]  S. Tremaine,et al.  SATELLITE DYNAMICS ON THE LAPLACE SURFACE , 2008, 0809.0237.

[63]  Jessica R. Lu,et al.  Measuring Distance and Properties of the Milky Way’s Central Supermassive Black Hole with Stellar Orbits , 2008, 0808.2870.

[64]  P. Lasky,et al.  Erratum: Uniting old stellar systems: from globular clusters to giant ellipticals , 2008, 0806.1090.

[65]  A. Seth,et al.  The Coincidence of Nuclear Star Clusters and Active Galactic Nuclei , 2008, 0801.0439.

[66]  Vicky Kalogera,et al.  Host Galaxies Catalog Used in LIGO Searches for Compact Binary Coalescence Events , 2007, 0706.1283.

[67]  L. Ho,et al.  Hubble Space Telescope STIS Spectra of Nuclear Star Clusters in Spiral Galaxies: Dependence of Age and Mass on Hubble Type , 2006, astro-ph/0604140.

[68]  T. Alexander,et al.  Resonant Relaxation near a Massive Black Hole: The Stellar Distribution and Gravitational Wave Sources , 2006, astro-ph/0601161.

[69]  D. Lorimer,et al.  A statistical study of 233 pulsar proper motions , 2005, astro-ph/0504584.

[70]  P. Saha,et al.  The tidal disruption rate in dense galactic cusps containing a supermassive binary black hole , 2004, astro-ph/0410610.

[71]  Casey Papovich,et al.  The Luminosity, Stellar Mass, and Number Density Evolution of Field Galaxies of Known Morphology from z = 0.5 to 3 , 2004, astro-ph/0405001.

[72]  E. Serabyn,et al.  An Extended Star Formation History for the Galactic Center from Hubble Space Telescope NICMOS Observations , 2003, astro-ph/0309757.

[73]  O. Blaes,et al.  The Kozai Mechanism and the Evolution of Binary Supermassive Black Holes , 2002, astro-ph/0203370.

[74]  C. Tout,et al.  Evolution of binary stars and the effect of tides on binary populations , 2002, astro-ph/0201220.

[75]  P. Kroupa The Initial Mass Function of Stars: Evidence for Uniformity in Variable Systems , 2002, Science.

[76]  R. Narayan,et al.  The Coalescence Rate of Double Neutron Star Systems , 2000, astro-ph/0012038.

[77]  S. Sridhar,et al.  Stellar Orbits in Triaxial Clusters around Black Holes in Galactic Nuclei , 2000, astro-ph/0007355.

[78]  Chris L. Fryer,et al.  Theoretical Black Hole Mass Distributions , 1999, astro-ph/9911312.

[79]  E. Ford,et al.  Secular Evolution of Hierarchical Triple Star Systems , 1999, astro-ph/9905348.

[80]  S.Sridhar,et al.  Stellar dynamics around black holes in galactic nuclei , 1998, astro-ph/9811304.

[81]  Vassiliki Kalogera,et al.  Formation of Low-Mass X-Ray Binaries. II. Common Envelope Evolution of Primordial Binaries with Extreme Mass Ratios , 1997, astro-ph/9708223.

[82]  S. Tremaine,et al.  Chaotic variations in the eccentricity of the planet orbiting 16 Cygni B , 1997, Nature.

[83]  S. Tremaine,et al.  Resonant relaxation in stellar systems , 1996, astro-ph/9603018.

[84]  A. Lichtenberg,et al.  Regular and Chaotic Dynamics , 1992 .

[85]  Douglas C. Heggie,et al.  Binary evolution in stellar dynamics , 1975 .

[86]  P. C. Peters Gravitational Radiation and the Motion of Two Point Masses , 1964 .

[87]  M. L. Lidov The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies , 1962 .

[88]  Yoshihide Kozai,et al.  Secular perturbations of asteroids with high inclination and eccentricity , 1962 .

[89]  S. D. Mink,et al.  UvA-DARE (Digital Academic Repository) Merger Rates of Double Neutron Stars and Stellar Origin Black Holes: The Impact of Initial Conditions on Binary Evolution Predictions , 2015 .

[90]  L. Spitzer Dynamical evolution of globular clusters , 1987 .

[91]  S. Tremaine,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 SHRINKING BINARY AND PLANETARY ORBITS BY KOZAI CYCLES WITH TIDAL FRICTION , 2022 .