The 4-way deterministic tiling problem is undecidable

It is shown that the (infinite) tiling problem by Wang tiles is undecidable even if the given tile set is deterministic by all four corners, i.e. a tile is uniquely determined by the colors of any two adjacent edges. The reduction is done from the Turing machine halting problem and uses the aperiodic tile set of Kari and Papasoglu.

[1]  Robert L. Berger The undecidability of the domino problem , 1966 .

[2]  Grzegorz Rozenberg,et al.  Nanotechnology: Science and Computation , 2006, Nanotechnology: Science and Computation.

[3]  Jarkko Kari,et al.  Some Undecidable Dynamical Properties for One-Dimensional Reversible Cellular Automata , 2009, Algorithmic Bioprocesses.

[4]  M. Sahani,et al.  Algorithmic Self-Assembly of DNA , 2006 .

[5]  Jarkko Kari,et al.  Deterministic Aperiodic Tile Sets , 1999 .

[6]  Ashish Goel,et al.  Combinatorial optimization problems in self-assembly , 2002, STOC '02.

[7]  Hao Wang Proving theorems by pattern recognition — II , 1961 .

[8]  Jarkko Kari The Nilpotency Problem of One-Dimensional Cellular Automata , 1992, SIAM J. Comput..

[9]  Matthew Cook,et al.  Combining self-healing and proofreading in self-assembly , 2008, Natural Computing.

[10]  Jarkko Kari,et al.  Theory of cellular automata: A survey , 2005, Theor. Comput. Sci..

[11]  Zohar Manna,et al.  Mathematical Theory of Computation , 2003 .

[12]  Jarkko Kari,et al.  Reversibility and Surjectivity Problems of Cellular Automata , 1994, J. Comput. Syst. Sci..

[13]  Ming-Yang Kao,et al.  Complexities for generalized models of self-assembly , 2004, SODA '04.

[14]  M. W. Shields An Introduction to Automata Theory , 1988 .

[15]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[16]  R. Robinson Undecidability and nonperiodicity for tilings of the plane , 1971 .

[17]  Erik Winfree,et al.  Self-healing Tile Sets , 2006, Nanotechnology: Science and Computation.