The poset of all copies of the random graph has the 2-localization property
暂无分享,去创建一个
[1] Peter J. Cameron,et al. The Random Graph , 2013, The Mathematics of Paul Erdős II.
[2] Milos S. Kurilic. Maximally embeddable components , 2013, Arch. Math. Log..
[3] Milos S. Kurilic. Different similarities , 2015, Arch. Math. Log..
[4] Stevo Todorcevic,et al. Forcing by non-scattered sets , 2012, Ann. Pure Appl. Log..
[5] Milos S. Kurilic. Isomorphic and strongly connected components , 2015, Arch. Math. Log..
[6] L. Newelski,et al. The ideal determined by the unsymmetric game , 1993 .
[7] Forcing with copies of countable ordinals , 2013, 1304.7714.
[8] R. Rado. Universal graphs and universal functions , 1964 .
[9] Andrzej Roslanowski,et al. n–localization property , 2005, Journal of Symbolic Logic.
[10] Milos S. Kurilic. From A1 to D5: towards a forcing-Related Classification of Relational Structures , 2014, J. Symb. Log..
[11] Milos S. Kurilic. Posets of copies of countable scattered linear orders , 2014, Ann. Pure Appl. Log..