Low-Power Circuits and Energy Harvesting for Structural Health Monitoring of Bridges

In this paper, we present a self-powered wireless sensor system for structural health monitoring of highway bridges. The system consists of an energy harvesting material, power conditioning circuitry, a sensor, an analog-to-digital converter, and a wireless transmitter. The energy harvesting material is a recently discovered NiMnCoIn magnetic shape memory alloy (MSMA), which converts mechanical vibrations first into a magnetization change and then, with assistance from a pick-up coil, into an alternating current (ac) output. The ac output of the MSMA is converted to a direct current (dc) voltage for powering a sensor and circuitry. Measurement results from a self-powered rectifier (SPR) and a six-bit successive approximation register analog-to-digital converter (SAR ADC) are presented, and implementation considerations are presented for the sensor and wireless transmitter. The SPR produces dc output voltages larger than 700 mV for loads larger than 100 kΩ with peak input amplitudes >;400 mVpk. A four-stage rectifier-multiplier is also implemented utilizing the proposed SPR as the first stage. The implemented SAR ADC is functional with a 0.9-V dc supply voltage (Vdd) and achieves an improved performance with a Vdd of 1.8 V, where the SAR ADC achieves a measured integral nonlinearity and differential nonlinearity of +1.2/-1.9 least significant bit and +1.3/-0.99 LSB, respectively. The SPR and SAR ADC are fabricated in a standard 0.5-μm CMOS process. The proposed sensor system can be fully optimized due to co-design capabilities. The lack of batteries makes this system ideal for deployment in bridge monitoring systems.

[1]  Yeong-Bin Yang,et al.  Vehicle–bridge interaction dynamics and potential applications , 2005 .

[2]  John Douglas Cockcroft,et al.  Experiments with High Velocity Positive Ions. II. The Disintegration of Elements by High Velocity Protons , 1932 .

[3]  A.G.F. Dingwall,et al.  Monolithic expandable 6 bit 20 MHz CMOS/SOS A/D converter , 1979, IEEE Journal of Solid-State Circuits.

[4]  Soumyajit Mandal,et al.  Low-Power CMOS Rectifier Design for RFID Applications , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[5]  John Douglas Cockcroft,et al.  Experiments with High Velocity Positive Ions. (I) Further Developments in the Method of Obtaining High Velocity Positive Ions , 1932 .

[6]  K. Kotani,et al.  High efficiency CMOS rectifier circuit with self-Vth-cancellation and power regulation functions for UHF RFIDs , 2007, 2007 IEEE Asian Solid-State Circuits Conference.

[7]  Franco Maloberti Data Converters , 2007 .

[8]  P. R. Gray,et al.  A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter , 1999, IEEE J. Solid State Circuits.

[9]  K. Kotani,et al.  Differential-drive CMOS rectifier for UHF RFIDs with 66% PCE at −12 dBm Input , 2008, 2008 IEEE Asian Solid-State Circuits Conference.

[10]  H. A. Wheeler Simple Inductance Formulas for Radio Coils , 1928, Proceedings of the Institute of Radio Engineers.

[11]  A. M. Abdel-Ghaffar,et al.  Ambient Vibration Studies of Golden Gate Bridge: II. Pier‐Tower Structure , 1985 .

[12]  Wouter A. Serdijn,et al.  A 1-V 225-nW 1KS/s current successive approximation ADC for pacemakers , 2010, 6th Conference on Ph.D. Research in Microelectronics & Electronics.

[13]  H. Greinacher,et al.  Über eine Methode, Wechselstrom mittels elektrischer Ventile und Kondensatoren in hochgespannten Gleichstrom umzuwandeln , 1921 .

[14]  Brian P. Ginsburg,et al.  Low-Power Impulse UWB Architectures and Circuits , 2009, Proceedings of the IEEE.

[15]  Henry A. Sodano,et al.  Development of an Automated Eddy Current Structural Health Monitoring Technique with an Extended Sensing Region for Corrosion Detection , 2007 .

[16]  S. Okamoto,et al.  Effect of magnetic field on martensitic transition of Ni46Mn41In13 Heusler alloy , 2006 .

[17]  A. M. Abdel-Ghaffar,et al.  Ambient Vibration Studies of Golden Gate Bridge: I. Suspended Structure , 1985 .

[18]  K. Ishida,et al.  Magnetic-field-induced shape recovery by reverse phase transformation , 2006, Nature.

[19]  K. Ishida,et al.  Magnetic and martensitic transformations of NiMnX(X=In,Sn,Sb) ferromagnetic shape memory alloys , 2004 .

[20]  Hoi-Jun Yoo,et al.  A 0.5-μ Vrms 12-μ W Wirelessly Powered Patch-Type Healthcare Sensor for Wearable Body Sensor Network , 2010, IEEE J. Solid State Circuits.

[21]  貝沼 亮介 Kinetic arrest of martensitic transformation in the NiCoMnIn metamagnetic shape memory alloy , 2008 .

[22]  Yeong-Bin Yang,et al.  EXTRACTING BRIDGE FREQUENCIES FROM THE DYNAMIC RESPONSE OF A PASSING VEHICLE , 2002 .

[23]  Anantha Chandrakasan,et al.  Sub-threshold Design for Ultra Low-Power Systems , 2006, Series on Integrated Circuits and Systems.

[24]  Haluk E. Karaca,et al.  Magnetic field and stress induced martensite reorientation in NiMnGa ferromagnetic shape memory alloy single crystals , 2006 .

[25]  Yeong-Bin Yang,et al.  Use of a passing vehicle to scan the fundamental bridge frequencies: An experimental verification , 2005 .

[26]  Haluk E. Karaca,et al.  Energy harvesting using martensite variant reorientation mechanism in a NiMnGa magnetic shape memory alloy , 2007 .

[27]  Chi-Ying Tsui,et al.  Analysis and Design Strategy of UHF Micro-Power CMOS Rectifiers for Micro-Sensor and RFID Applications , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[28]  K. Krebber,et al.  Polymer Optical Fiber Sensors for Distributed Strain Measurement and Application in Structural Health Monitoring , 2009, IEEE Sensors Journal.

[29]  P. Pillay,et al.  Self-Powered Sensors for Monitoring of Highway Bridges , 2009, IEEE Sensors Journal.

[30]  Mohammod Ali,et al.  A Miniature Energy Harvesting Device for Wireless Sensors in Electric Power System , 2010, IEEE Sensors Journal.

[31]  A. M. Abdel-Ghaffar,et al.  Nonlinear Free Vibrations of Suspension Bridges: Application , 1983 .

[32]  David K. Y. Yau,et al.  An Experimental Low-Cost, Low-Data-Rate Rapid Structural Assessment Network , 2009, IEEE Sensors Journal.

[33]  M. Ortmanns,et al.  Fully CMOS integrated active rectifier without voltage drop , 2008, 2008 51st Midwest Symposium on Circuits and Systems.

[34]  W. B. Knowlton,et al.  Training, constraints, and high-cycle magneto-mechanical properties of Ni-Mn-Ga magnetic shape-memory alloys , 2008 .

[35]  Hugo Sol,et al.  Crack Detection in a Concrete Beam using Two Different Camera Techniques , 2006 .

[36]  Farhad Ansari,et al.  Sensing issues in civil structural health monitoring , 2005 .

[37]  Chung Bang Yun,et al.  Multiple Crack Detection of Concrete Structures Using Impedance-based Structural Health Monitoring Techniques , 2006 .

[38]  Haluk E. Karaca,et al.  Magnetic Field‐Induced Phase Transformation in NiMnCoIn Magnetic Shape‐Memory Alloys—A New Actuation Mechanism with Large Work Output , 2009 .

[39]  Zhou Zhao,et al.  0.18 μm CMOS integrated circuit design for impedance-based structural health monitoring , 2010, IET Circuits Devices Syst..

[40]  Steve Lazar,et al.  A RF to DC Voltage Conversion Model for Multi-Stage Rectifiers in UHF RFID Transponders , 2009, IEEE Journal of Solid-State Circuits.

[41]  Jingang Yi,et al.  A Vibration-Based PMN-PT Energy Harvester , 2009, IEEE Sensors Journal.

[42]  K. Kotani,et al.  High-Efficiency Differential-Drive CMOS Rectifier for UHF RFIDs , 2009, IEEE Journal of Solid-State Circuits.

[43]  N. Goldsman,et al.  Improved RF power harvesting circuit design , 2007, 2007 International Semiconductor Device Research Symposium.

[44]  T.H. Teo,et al.  A 0.9V l00nW Rail-to-Rail SAR ADC for Biomedical Applications , 2007, 2007 International Symposium on Integrated Circuits.

[45]  Benjamin A. Graybeal,et al.  Visual Inspection of Highway Bridges , 2002 .

[46]  Andrea Boni,et al.  A CMOS Analog Frontend for a Passive UHF RFID Tag , 2006, ISLPED'06 Proceedings of the 2006 International Symposium on Low Power Electronics and Design.

[47]  K. Ishida,et al.  Martensitic and Magnetic Transformation Behaviors in Heusler-Type NiMnIn and NiCoMnIn Metamagnetic Shape Memory Alloys , 2007 .

[48]  B.P. Ginsburg,et al.  500-MS/s 5-bit ADC in 65-nm CMOS With Split Capacitor Array DAC , 2007, IEEE Journal of Solid-State Circuits.

[49]  Alyssa B. Apsel,et al.  A 6μW, 100Kbps, 3–5GHz, UWB impulse radio transmitter , 2010, 2010 ACM/IEEE International Symposium on Low-Power Electronics and Design (ISLPED).

[50]  Peter M. Asbeck,et al.  Near zero turn-on voltage high-efficiency UHF RFID rectifier in silicon-on-sapphire CMOS , 2010, 2010 IEEE Radio Frequency Integrated Circuits Symposium.

[51]  H. Maier,et al.  Shape memory and pseudoelasticity response of NiMnCoIn magnetic shape memory alloy single crystals , 2008 .

[52]  M. Dapino,et al.  Experimental characterization of the sensor effect in ferromagnetic shape memory Ni-Mn-Ga , 2006 .

[53]  Koji Kotani,et al.  High efficiency CMOS rectifier circuits for UHF RFIDs using Vth cancellation techniques , 2009, 2009 IEEE 8th International Conference on ASIC.

[54]  Jie Wu,et al.  A Fully Integrated 900-MHz Passive RFID Transponder Front End With Novel Zero-Threshold RF–DC Rectifier , 2009, IEEE Transactions on Industrial Electronics.

[55]  A. Boni,et al.  Power Supply Generation in CMOS Passive UHF RFID Tags , 2006, 2006 Ph.D. Research in Microelectronics and Electronics.

[56]  K. Ishida,et al.  Metamagnetic shape memory effect in NiMn-based Heusler-type alloys , 2008 .

[57]  Aydin I. Karsilayan,et al.  Self-Powered Rectifier for Energy Harvesting Applications , 2011, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[58]  H. Yoshida,et al.  A 950-MHz rectifier circuit for sensor network tags with 10-m distance , 2006, IEEE Journal of Solid-State Circuits.

[59]  Mohammod Ali,et al.  Concrete Moisture Content Measurement Using Interdigitated Near-Field Sensors , 2010, IEEE Sensors Journal.

[60]  A. Facen,et al.  CMOS power retriever for UHF RFID tags , 2007 .

[61]  Yu. G. Kachan,et al.  Linear rectifier for small signals , 1975 .

[62]  M.J. Whelan,et al.  Highway Bridge Assessment Using an Adaptive Real-Time Wireless Sensor Network , 2009, IEEE Sensors Journal.

[63]  D. Yamazaki,et al.  A Passive UHF RF Identification CMOS Tag IC Using Ferroelectric RAM in 0.35-$\mu{\hbox {m}}$ Technology , 2007, IEEE Journal of Solid-State Circuits.

[64]  Y. Lembeye,et al.  Autonomous, Low Voltage, High Efficiency, CMOS Rectifier for Three-Phase Micro Generators , 2007, TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference.