The benthic food web connects the estuarine habitat mosaic to adjacent ecosystems

[1]  Huanzhang Liu,et al.  Food Web Structure and Trophic Interactions Revealed by Stable Isotope Analysis in the Midstream of the Chishui River, a Tributary of the Yangtze River, China , 2021, Water.

[2]  E. Dias,et al.  Habitat use and food sources of European flounder larvae (Platichthys flesus, L. 1758) across the Minho River estuary salinity gradient (NW Iberian Peninsula). , 2020, Regional studies in marine science.

[3]  Baoshan Chen,et al.  Simultaneous determination of dissolved inorganic carbon (DIC) concentration and stable isotope (δ13C-DIC) by Cavity Ring-Down Spectroscopy: Application to study carbonate dynamics in the Chesapeake Bay , 2019, Marine Chemistry.

[4]  E. Dias,et al.  Riparian vegetation subsidizes sea lamprey ammocoetes in a nursery area , 2019, Aquatic Sciences.

[5]  R. Mac Nally,et al.  Environmental correlates of food-chain length, mean trophic level and trophic level variance in invaded riverine fish assemblages. , 2018, The Science of the total environment.

[6]  E. Kristensen,et al.  Stable C and N Isotope Composition of Primary Producers and Consumers Along an Estuarine Salinity Gradient: Tracing Mixing Patterns and Trophic Discrimination , 2018, Estuaries and Coasts.

[7]  J. C. Cantera Kintz,et al.  Food Web Structure and Trophic Relations in a Riverine Mangrove System of the Tropical Eastern Pacific, Central Coast of Colombia , 2018, Estuaries and Coasts.

[8]  E. Dias,et al.  Estuarine consumers utilize marine, estuarine and terrestrial organic matter and provide connectivity among these food webs , 2016 .

[9]  J. Zydlewski,et al.  Sea lamprey carcasses exert local and variable food web effects in a nutrient-limited Atlantic coastal stream , 2016 .

[10]  J. Kelly,et al.  Landscape-Scale Food Webs of Fish Nursery Habitat Along a River-Coast Mixing Zone , 2015, Estuaries and Coasts.

[11]  I. Valiela,et al.  Land–Sea Coupling and Global-Driven Forcing: Following Some of Scott Nixon’s Challenges , 2015, Estuaries and Coasts.

[12]  M. Clayton,et al.  Stable Isotope Turnover and Half-Life in Animal Tissues: A Literature Synthesis , 2015, PloS one.

[13]  G. Bachelet,et al.  Feeding Habitats, Connectivity and Origin of Organic Matter Supporting Fish Populations in an Estuary with a Reduced Intertidal Area Assessed by Stable Isotope Analysis , 2015, Estuaries and Coasts.

[14]  C. Simenstad,et al.  Using stable isotopes to discern mechanisms of connectivity in estuarine detritus-based food webs , 2015 .

[15]  I. Martins,et al.  Structure, growth and production of a remarkably abundant population of the common goby, Pomatoschistus microps (Actinopterygii: Gobiidae) , 2014, Environmental Biology of Fishes.

[16]  E. Dias,et al.  Linking terrestrial and benthic estuarine ecosystems: organic matter sources supporting the high secondary production of a non-indigenous bivalve , 2014, Biological Invasions.

[17]  I. Martins,et al.  Population ecology and habitat preferences of juvenile flounder Platichthys flesus (Actinopterygii: Pleuronectidae) in a temperate estuary , 2013 .

[18]  K. McMahon,et al.  A review of ecogeochemistry approaches to estimating movements of marine animals , 2013 .

[19]  Y. Yamashita,et al.  Spatial-temporal feeding dynamics of benthic communities in an estuary-marine gradient , 2012 .

[20]  V. Brotas,et al.  Defining phytoplankton class boundaries in Portuguese transitional waters: An evaluation of the ecological quality status according to the Water Framework Directive , 2012 .

[21]  T. Pearsons,et al.  Nutrient Enrichment with Salmon Carcass Analogs in the Columbia River Basin, USA: A Stream Food Web Analysis , 2012 .

[22]  Matthew R. First,et al.  Suspended material availability and filtration–biodeposition processes performed by a native and invasive bivalve species in streams , 2011, Hydrobiologia.

[23]  L. Guilhermino,et al.  Massive mortality of the Asian clam Corbicula fluminea in a highly invaded area , 2011, Biological Invasions.

[24]  T. Sutton,et al.  Lipid correction for carbon stable isotope analysis of deep-sea fishes , 2010 .

[25]  Richard Inger,et al.  Source Partitioning Using Stable Isotopes: Coping with Too Much Variation , 2010, PloS one.

[26]  R. Latour,et al.  Turnover and fractionation of carbon and nitrogen stable isotopes in tissues of a migratory coastal predator, summer flounder (Paralichthys dentatus) , 2010 .

[27]  Marcus Sheaves,et al.  Consequences of ecological connectivity: the coastal ecosystem mosaic , 2009 .

[28]  Michio Kondoh,et al.  Food-chain length and adaptive foraging , 2009, Proceedings of the Royal Society B: Biological Sciences.

[29]  E. Angulo,et al.  Variation in discrimination factors (Δ15N and Δ13C): the effect of diet isotopic values and applications for diet reconstruction , 2009 .

[30]  E. Bonsdorff,et al.  Temporal variability of a benthic food web: patterns and processes in a low-diversity system , 2009 .

[31]  Nathan Wolf,et al.  Isotopic ecology ten years after a call for more laboratory experiments , 2009, Biological reviews of the Cambridge Philosophical Society.

[32]  K. R. Clarke,et al.  Testing of null hypotheses in exploratory community analyses: similarity profiles and biota-environment linkage , 2008 .

[33]  R. Sousa,et al.  Subtidal macrozoobenthic assemblages along the River Minho estuarine gradient (north‐west Iberian Peninsula) , 2008 .

[34]  J. Olney,et al.  Organic Matter Sources Supporting Lower Food Web Production in the Tidal Freshwater Portion of the York River Estuary, Virginia , 2008 .

[35]  K. Winemiller,et al.  Hydrogeomorphology and river impoundment affect food-chain length of diverse Neotropical food webs , 2008 .

[36]  K. Winemiller,et al.  Evidence supporting the importance of terrestrial carbon in a large-river food web. , 2008, Ecology.

[37]  Stanislas F. Dubois,et al.  Isotope trophic-step fractionation of suspension-feeding species: Implications for food partitioning in coastal ecosystems , 2007 .

[38]  Peter M. Smyntek,et al.  A standard protocol for stable isotope analysis of zooplankton in aquatic food web research using mass balance correction models , 2007 .

[39]  J. Olney,et al.  Tracking Nursery Habitat Use in the York River Estuary, Virginia, by Young American Shad Using Stable Isotopes , 2007 .

[40]  William W. Fetzer,et al.  Global patterns of aquatic food chain length , 2007 .

[41]  M. Varela,et al.  Stable nitrogen isotope studies of the pelagic food web on the Atlantic shelf of the Iberian Peninsula , 2007 .

[42]  F. Ollevier,et al.  Changes in d13C and d15N in different tissues of juvenile sand goby Pomatoschistus minutus: a laboratory diet-switch experiment , 2007 .

[43]  A. Nogueira,et al.  Effects of Cadmium and Zinc on the feeding behaviour of two freshwater crustaceans: Atyaephyra desmarestii (Decapoda) and Echinogammarus meridionalis (Amphipoda). , 2007, Chemosphere.

[44]  J. Hoffman,et al.  Interannual variation in stable carbon and nitrogen isotope biogeochemistry of the Mattaponi River, Virginia , 2006 .

[45]  M. Varela,et al.  Phytoplankton and macrophyte contributions to littoral food webs in the Galician upwelling estimated from stable isotopes , 2006 .

[46]  I. Romero,et al.  Variability of macrobenthic assemblages under abnormal climatic conditions in a small scale tropical estuary , 2006 .

[47]  W. Goedkoop,et al.  Trophic fractionation of carbon and nitrogen stable isotopes in Chironomus riparius reared on food of aquatic and terrestrial origin , 2006 .

[48]  S. Jennings,et al.  Effects of chemical lipid extraction and arithmetic lipid correction on stable isotope ratios of fish tissues. , 2006, Rapid communications in mass spectrometry : RCM.

[49]  Stephen R. Carpenter,et al.  ECOSYSTEM SUBSIDIES: TERRESTRIAL SUPPORT OF AQUATIC FOOD WEBS FROM 13C ADDITION TO CONTRASTING LAKES , 2005 .

[50]  H. Yokoyama,et al.  Variability of diet-tissue isotopic fractionation in estuarine macrobenthos , 2005 .

[51]  Carlos Antunes,et al.  Molluscan fauna in the freshwater tidal area of the River Minho estuary, NW of Iberian Peninsula , 2005 .

[52]  M. Pardal,et al.  The effect of eutrophication abatement on the bivalve Scrobicularia plana , 2005 .

[53]  A. Kasai,et al.  Utilization of terrestrial organic matter by the bivalve Corbicula japonica estimated from stable isotope analysis , 2005, Fisheries Science.

[54]  Lawrence P. Sanford,et al.  Variability Of Suspended Particle Concentrations, Sizes, And Settling Velocities In The Chesapeake Bay Turbidity Maximum , 2004 .

[55]  L. J. Osher,et al.  The effect of nitrogen loading on a brackish estuarine faunal community: A stable isotope approach , 2004 .

[56]  M. Attrill,et al.  Ontogenetic changes in metabolism may determine diet shifts for a sit-and-wait predator , 2004 .

[57]  J. Grey,et al.  Effect of preparation and preservation procedures on carbon and nitrogen stable isotope determinations from zooplankton. , 2003, Rapid communications in mass spectrometry : RCM.

[58]  Jae-Sang Hong,et al.  Trophic importance of benthic microalgae to macrozoobenthos in coastal bay systems in Korea: dual stable C and N isotope analyses , 2003 .

[59]  A. Lorrain,et al.  Decarbonation and preservation method for the analysis of organic C and N contents and stable isotope ratios of low-carbonated suspended particulate material , 2003 .

[60]  T. Seikai,et al.  Influence of diet shift from formulated feed to live mysids on the carbon and nitrogen stable isotope ratio (δ 13C and δ 15N) in dorsal muscles of juvenile Japanese flounders, Paralichthys olivaceus , 2003 .

[61]  T. Francis,et al.  Pacific salmon and the ecology of coastal ecosystems , 2003 .

[62]  M. Benfield,et al.  Stable isotope indicators of movement and residency for brown shrimp (Farfantepenaeus aztecus) in coastal Louisiana marshscapes , 2003 .

[63]  S. Wainright,et al.  Estimating turnover rates of carbon and nitrogen in recently metamorphosed winter flounder Pseudopleuronectes americanus with stable isotopes , 2002 .

[64]  D. Post,et al.  The long and short of food-chain length , 2002 .

[65]  J. Chanton,et al.  Examination of coupling between primary and secondary production in a river‐dominated estuary: Apalachicola Bay, Florida, U.S.A. , 2002 .

[66]  James E. Cloern,et al.  Stable carbon and nitrogen isotope composition of aquatic and terrestrial plants of the San Francisco Bay estuarine system , 2002 .

[67]  B. Fry Conservative mixing of stable isotopes across estuarine salinity gradients: A conceptual framework for monitoring watershed influences on downstream fisheries production , 2002 .

[68]  D. Post USING STABLE ISOTOPES TO ESTIMATE TROPHIC POSITION: MODELS, METHODS, AND ASSUMPTIONS , 2002 .

[69]  J. Rasmussen,et al.  Variation in δ15N and δ13C trophic fractionation: Implications for aquatic food web studies , 2001 .

[70]  Lawrence P. Sanford,et al.  Reconsidering the physics of the Chesapeake Bay estuarine turbidity maximum , 2001 .

[71]  R. Holmes,et al.  NITROGEN FLOW THROUGH THE FOOD WEB IN THE OLIGOHALINE ZONE OF A NEW ENGLAND ESTUARY , 2000 .

[72]  J. Kromkamp,et al.  Bacterial and phytoplankton production in the maximum turbidity zone of three European estuaries: the Elbe, Westerschelde and Gironde , 1999 .

[73]  C. Heip,et al.  Biogeochemistry of the MAximum TURbidity Zone of Estuaries (MATURE): some conclusions , 1999 .

[74]  Y. Sin,et al.  Spatial and temporal characteristics of nutrient and phytoplankton dynamics in the York River Estuary, Virginia: Analyses of long-term data , 1999 .

[75]  K. McCann,et al.  Food Web Stability: The Influence of Trophic Flows across Habitats , 1998, The American Naturalist.

[76]  R. Benner,et al.  What happens to terrestrial organic matter in the ocean , 2004 .

[77]  Linda A. Deegan,et al.  Evidence for spatial variability in estuarine food webs , 1997 .

[78]  H. Paerl,et al.  The role of standing dead Spartina alterniflora and benthic microalgae in salt marsh food webs: Considerations based on multiple stable isotope analysis , 1995 .

[79]  Jeffery D. Musiak,et al.  Particle Trapping in Estuarine Tidal Flows , 1994 .

[80]  W. Rockwell Geyer,et al.  The importance of suppression of turbulence by stratification on the estuarine turbidity maximum , 1993 .

[81]  F. Moreira,et al.  On the food of the European eel, Anguilla anguilla (L.), in the upper zone of the Tagus estuary, Portugal , 1992 .

[82]  Thomas W. Schoener,et al.  Food Webs From the Small to the Large: The Robert H. MacArthur Award Lecture , 1989 .

[83]  J. Meyer,et al.  Bacteria as a Food Source for Black Fly Larvae in a Blackwater River , 1987, Journal of the North American Benthological Society.

[84]  Jeffrey E. Richey,et al.  Compositions and fluxes of particulate organic material in the Amazon River1 , 1986 .

[85]  M. Minagawa,et al.  Stepwise enrichment of 15N along food chains: Further evidence and the relation between δ15N and animal age , 1984 .

[86]  B. Fry,et al.  Rapid 13C/12C turnover during growth of brown shrimp (Penaeus aztecus) , 1982, Oecologia.

[87]  J. Wägele,et al.  Fine structure and function of the digestive tract of Cyathura carinata (Krøyer) (Crustacea, Isopoda) , 1981, Zoomorphology.

[88]  M. J. Deniro,et al.  Mechanism of carbon isotope fractionation associated with lipid synthesis. , 1977, Science.

[89]  C. Lorenzen,et al.  DETERMINATION OF CHLOROPHYLL AND PHEO‐PIGMENTS: SPECTROPHOTOMETRIC EQUATIONS1 , 1967 .

[90]  E. Dias,et al.  Food sources of the non-indigenous bivalve Ruditapes philippinarum (Adams and Reeve, 1850) and trophic niche overlap with native species , 2019, Aquatic Invasions.

[91]  N. B. Richoux,et al.  Spatial and Temporal Changes in Estuarine Food Web Structure: Differential Contributions of Marsh Grass Detritus , 2014, Estuaries and Coasts.

[92]  Neil Rooney,et al.  Integrating food web diversity, structure and stability. , 2012, Trends in ecology & evolution.

[93]  R. Sousa,et al.  Factors influencing epibenthic assemblages in the Minho Estuary (NW Iberian Peninsula). , 2010, Marine pollution bulletin.

[94]  L. France,et al.  Carbon-13 enrichment in benthic compared to planktonic algae : foodweb implications , 2006 .

[95]  Colin R. Townsend,et al.  Energy availability, spatial heterogeneity and ecosystem size predict food-web structure in streams , 2005 .

[96]  G. Polis,et al.  TOWARD AN INTEGRATION OF LANDSCAPE AND FOOD WEB ECOLOGY : The Dynamics of Spatially Subsidized Food Webs , 2005 .

[97]  M. Vanni,et al.  Overview: Cross-habitat flux of nutrients and detritus , 2004 .

[98]  David L. Strayer,et al.  Transformation of Freshwater Ecosystems by Bivalves , 1999 .

[99]  J. Cloern,et al.  Molecular and isotopic tracers used to examine sources of organic matter and its incorporation into the food webs of San Francisco Bay , 1995 .

[100]  R. Hughes,et al.  Feeding behaviour and diet of Corophium volutator in an estuary in southeastern England , 1994 .

[101]  G. Kleppel On the diets of calanoid copepods , 1993 .

[102]  B. Fry,et al.  δ13C Measurements as Indicators of Carbon Flow in Marine and Freshwater Ecosystems , 1989 .

[103]  B. Peterson,et al.  STABLE ISOTOPES IN ECOSYSTEM STUDIES , 1987 .

[104]  L. Pihl Food selection and consumption of mobile epibenthic fauna in shallow marine areas , 1985 .