Kolakoski-(2m,2n) are limit-periodic model sets

We consider (generalized) Kolakoski sequences on an alphabet with two even numbers. They can be related to a primitive substitution rule of constant length l. Using this connection, we prove that they have pure point dynamical and pure point diffractive spectrum, where we make use of the strong interplay between these two concepts. Since these sequences can then be described as model sets with l-adic internal space, we add an approach to “visualize” such internal spaces.

[1]  S. Dworkin Spectral theory and x-ray diffraction , 1993 .

[2]  Fernando Q. Gouvêa p -adic Numbers , 1993 .

[3]  C. Mauduit,et al.  Substitutions in dynamics, arithmetics, and combinatorics , 2002 .

[4]  Jeong-Yup Lee,et al.  Lattice substitution systems and model sets , 2001, Discret. Comput. Geom..

[5]  Michael Baake,et al.  A Guide to Mathematical Quasicrystals , 2002 .

[6]  A. Janner,et al.  The nature of the atomic surfaces of quasiperiodic self-similar structures , 1993 .

[7]  Peter Kramer,et al.  PLANAR PATTERNS WITH FIVEFOLD SYMMETRY AS SECTIONS OF PERIODIC STRUCTURES IN 4-SPACE , 1990 .

[8]  A. Robert,et al.  A Course in p-adic Analysis , 2000 .

[9]  Charles Radin,et al.  Space tilings and local isomorphism , 1992 .

[10]  Robert V. Moody,et al.  The Mathematics of Long-Range Aperiodic Order , 1997 .

[11]  Jean-Pierre Gazeau,et al.  From Quasicrystals to More Complex Systems , 2000 .

[12]  Boris Solomyak,et al.  Pure Point Dynamical and Diffraction Spectra , 2002, 0910.4809.

[13]  Kolakoski-(3, 1) Is a (Deformed) Model Set , 2002, Canadian Mathematical Bulletin.

[14]  F. M. Dekking,et al.  The spectrum of dynamical systems arising from substitutions of constant length , 1978 .

[15]  F. Gähler,et al.  The Diffraction Pattern of Self-Similar Tilings , 1997 .

[16]  Robert V. Moody,et al.  Model Sets: A Survey , 2000 .

[17]  Michael F. Barnsley,et al.  Fractals everywhere , 1988 .

[18]  M. Queffélec Substitution dynamical systems, spectral analysis , 1987 .

[19]  F. M. Dekking,et al.  What is the Long Range Order in the Kolakoski Sequence , 1997 .

[20]  John C. Martin,et al.  Substitution minimal flows , 1971 .

[21]  E. Arthur Robinson,et al.  Ergodic Theory of ℤ d Actions: The dynamical theory of tilings and Quasicrystallography , 1996 .