Kolakoski-(2m,2n) are limit-periodic model sets
暂无分享,去创建一个
[1] S. Dworkin. Spectral theory and x-ray diffraction , 1993 .
[2] Fernando Q. Gouvêa. p -adic Numbers , 1993 .
[3] C. Mauduit,et al. Substitutions in dynamics, arithmetics, and combinatorics , 2002 .
[4] Jeong-Yup Lee,et al. Lattice substitution systems and model sets , 2001, Discret. Comput. Geom..
[5] Michael Baake,et al. A Guide to Mathematical Quasicrystals , 2002 .
[6] A. Janner,et al. The nature of the atomic surfaces of quasiperiodic self-similar structures , 1993 .
[7] Peter Kramer,et al. PLANAR PATTERNS WITH FIVEFOLD SYMMETRY AS SECTIONS OF PERIODIC STRUCTURES IN 4-SPACE , 1990 .
[8] A. Robert,et al. A Course in p-adic Analysis , 2000 .
[9] Charles Radin,et al. Space tilings and local isomorphism , 1992 .
[10] Robert V. Moody,et al. The Mathematics of Long-Range Aperiodic Order , 1997 .
[11] Jean-Pierre Gazeau,et al. From Quasicrystals to More Complex Systems , 2000 .
[12] Boris Solomyak,et al. Pure Point Dynamical and Diffraction Spectra , 2002, 0910.4809.
[13] Kolakoski-(3, 1) Is a (Deformed) Model Set , 2002, Canadian Mathematical Bulletin.
[14] F. M. Dekking,et al. The spectrum of dynamical systems arising from substitutions of constant length , 1978 .
[15] F. Gähler,et al. The Diffraction Pattern of Self-Similar Tilings , 1997 .
[16] Robert V. Moody,et al. Model Sets: A Survey , 2000 .
[17] Michael F. Barnsley,et al. Fractals everywhere , 1988 .
[18] M. Queffélec. Substitution dynamical systems, spectral analysis , 1987 .
[19] F. M. Dekking,et al. What is the Long Range Order in the Kolakoski Sequence , 1997 .
[20] John C. Martin,et al. Substitution minimal flows , 1971 .
[21] E. Arthur Robinson,et al. Ergodic Theory of ℤ d Actions: The dynamical theory of tilings and Quasicrystallography , 1996 .