The Structural Basis for the Action of the Antibiotics Tetracycline, Pactamycin, and Hygromycin B on the 30S Ribosomal Subunit

We have used the recently determined atomic structure of the 30S ribosomal subunit to determine the structures of its complexes with the antibiotics tetracycline, pactamycin, and hygromycin B. The antibiotics bind to discrete sites on the 30S subunit in a manner consistent with much but not all biochemical data. For each of these antibiotics, interactions with the 30S subunit suggest a mechanism for its effects on ribosome function.

[1]  E. Makarov,et al.  Kinetic aspects of tetracycline action on the acceptor (A) site of Escherichia coli ribosomes , 1982, FEBS letters.

[2]  P. Wollenzien,et al.  Effects of Tetracycline and Spectinomycin on the Tertiary Structure of Ribosomal RNA in the Escherichia coli 30 S Ribosomal Subunit* , 1999, The Journal of Biological Chemistry.

[3]  A. Gudkov,et al.  Tetracyclines induce changes in accessibility of ribosomal proteins to proteases. , 1996, Biochimie.

[4]  T. Earnest,et al.  X-ray crystal structures of 70S ribosome functional complexes. , 1999, Science.

[5]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[6]  J. Wilhelm,et al.  Fidelity of the eukaryotic codon-anticodon interaction: interference by aminoglycoside antibiotics. , 1984, Biochemistry.

[7]  D. Taylor,et al.  Tetracycline resistance mediated by ribosomal protection , 1996, Antimicrobial agents and chemotherapy.

[8]  J. Modolell,et al.  Dual interference of hygromycin B with ribosomal translocation and with aminoacyl-tRNA recognition. , 1978, European journal of biochemistry.

[9]  R. Garrett,et al.  Binding sites of the antibiotics pactamycin and celesticetin on ribosomal RNAs. , 1991, Biochimie.

[10]  W. Saenger,et al.  Structure of the Tet repressor-tetracycline complex and regulation of antibiotic resistance. , 1994, Science.

[11]  R. Brimacombe,et al.  A new model for the three-dimensional folding of Escherichia coli 16 S ribosomal RNA. I. Fitting the RNA to a 3D electron microscopic map at 20 A. , 1997, Journal of molecular biology.

[12]  I. Goldberg,et al.  Analysis of the two steps in polypeptide chain initiation inhibited by pactamycin. , 1976, Biochemistry.

[13]  A. Mankin,et al.  Pactamycin resistance mutations in functional sites of 16 S rRNA. , 1997, Journal of molecular biology.

[14]  B. D. Davis,et al.  Actions of aurintricarboxylate, kasugamycin, and pactamycin on Escherichia coli polysomes. , 1973, Biochemistry.

[15]  Chris M. Brown,et al.  Two regions of the Escherichia coli 16S ribosomal RNA are important for decoding stop signals in polypeptide chain termination. , 1993, Nucleic acids research.

[16]  J J Stezowski,et al.  Chemical-structural properties of tetracycline derivatives. 1. Molecular structure and conformation of the free base derivatives. , 1976, Journal of the American Chemical Society.

[17]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[18]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[19]  B. Cooperman,et al.  Single protein omission reconstitution studies of tetracycline binding to the 30S subunit of Escherichia coli ribosomes. , 1990, Biochemistry.

[20]  S. Pestka The use of inhibitors in studies on protein synthesis. , 1974, Methods in enzymology.

[21]  H. Neu,et al.  The Crisis in Antibiotic Resistance , 1992, Science.

[22]  H. Noller,et al.  Mutations in ribosomal proteins S4 and S12 influence the higher order structure of 16 S ribosomal RNA. , 1989, Journal of molecular biology.

[23]  Joachim Frank,et al.  A ratchet-like inter-subunit reorganization of the ribosome during translocation , 2000, Nature.

[24]  E. Blackburn,et al.  The nucleotide sequence of the 17S ribosomal RNA gene of Tetrahymena thermophila and the identification of point mutations resulting in resistance to the antibiotics paromomycin and hygromycin. , 1985, The Journal of biological chemistry.

[25]  V. Ramakrishnan,et al.  Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics , 2000, Nature.

[26]  B. Epe,et al.  Competition between tetracycline and tRNA at both P and A sites of the ribosome of Escherichia coli , 1987, FEBS letters.

[27]  A. E. Herner,et al.  Inhibition by pactamycin of the initiation of protein synthesis. Binding of N-acetylphenylalanyl transfer ribonucleic acid and polyuridylic acid to ribosomes. , 1969, Biochemistry.

[28]  J. Puglisi,et al.  Structural origins of gentamicin antibiotic action , 1998, The EMBO journal.

[29]  L. Cohen,et al.  The role of magnesium. , 2002, The Israel Medical Association journal : IMAJ.

[30]  A. Salyers,et al.  New perspectives in tetracycline resistance , 1990, Molecular microbiology.

[31]  Roger A. Garrett,et al.  The Ribosome, Structure, Function, Antibiotics, and Cellular Interactions , 2000 .

[32]  D. Vazquez Inhibitors of protein synthesis , 1974, FEBS letters.

[33]  J. Cove,et al.  16S rRNA Mutation Associated with Tetracycline Resistance in a Gram-Positive Bacterium , 1998, Antimicrobial Agents and Chemotherapy.

[34]  J Frank,et al.  Three-dimensional reconstruction of the Escherichia coli 30 S ribosomal subunit in ice. , 1996, Journal of molecular biology.

[35]  M. Nomura,et al.  Colicin E3 induced cleavage of 16S ribosomal ribonucleic acid; blocking effects of certain antibiotics. , 1973, Biochemistry.

[36]  H. Noller,et al.  Specific protection of 16 S rRNA by translational initiation factors. , 1995, Journal of molecular biology.

[37]  V. Burdett Tet(M)-promoted release of tetracycline from ribosomes is GTP dependent , 1996, Journal of bacteriology.

[38]  C. Vonrhein,et al.  Structure of the 30S ribosomal subunit , 2000, Nature.

[39]  A E Dahlberg,et al.  A conformational switch in Escherichia coli 16S ribosomal RNA during decoding of messenger RNA. , 1997, Science.

[40]  I. Leviton Inhibitors of protein synthesis. , 1999, Cancer investigation.

[41]  A. Böck,et al.  Comparative analysis of the effect of aminoglycosides on bacterial protein synthesis in vitro. , 1979, European journal of biochemistry.

[42]  F. Schluenzen,et al.  Structure of Functionally Activated Small Ribosomal Subunit at 3.3 Å Resolution , 2000, Cell.

[43]  B. Cooperman,et al.  Molecular studies on the mechanism of tetracycline resistance mediated by Tet(O) , 1990, Antimicrobial Agents and Chemotherapy.

[44]  U. Geigenmüller,et al.  Tetracycline can inhibit tRNA binding to the ribosomal P site as well as to the A site. , 1986, European journal of biochemistry.

[45]  A. E. Herner,et al.  Inhibition by pactamycin of the initiation of protein synthesis. Effect on the 30S ribosomal subunit. , 1969, Biochemistry.

[46]  A. Dahlberg,et al.  Effects of mutagenesis of a conserved base-paired site near the decoding region of Escherichia coli 16 S ribosomal RNA. , 1990, Journal of molecular biology.

[47]  J. Gordon Hydrolysis of guanosine 5'-triphosphate associated wh binding of aminoacyl transfer ribonucleic acid to ribosomes. , 1969, The Journal of biological chemistry.

[48]  J. Wilhelm,et al.  Mechanisms of action of aminoglycoside antibiotics in eucaryotic protein synthesis , 1984, Antimicrobial Agents and Chemotherapy.

[49]  G. Steiner,et al.  Interaction of tetracycline with RNA: photoincorporation into ribosomal RNA of Escherichia coli. , 1997, Nucleic acids research.

[50]  J. Modolell,et al.  Inhibition of ribosomal translocation by aminoglycoside antibiotics. , 1978, Biochemical and biophysical research communications.

[51]  J. Davies,et al.  Studies on the mode of action of hygromycin B, an inhibitor of translocation in eukaryotes. , 1978, Biochimica et biophysica acta.

[52]  Harry F. Noller,et al.  Interaction of antibiotics with functional sites in 16S ribosomal RNA , 1987, Nature.

[53]  H. Noller,et al.  Interaction of antibiotics with A‐ and P‐site‐specific bases in 16S ribosomal RNA. , 1991, The EMBO journal.

[54]  I. Chopra,et al.  Tetracyclines, molecular and clinical aspects. , 1992, The Journal of antimicrobial chemotherapy.

[55]  R. Brimacombe,et al.  Arrangement of tRNAs in Pre- and Posttranslocational Ribosomes Revealed by Electron Cryomicroscopy , 1997, Cell.

[56]  Ernest Frederick Gale,et al.  The Molecular basis of antibiotic action , 1972 .

[57]  R. Read Improved Fourier Coefficients for Maps Using Phases from Partial Structures with Errors , 1986 .

[58]  R. L. Mann,et al.  The Isolation of a Second Antibiotic from Streptomyces hygroscopicus , 1958 .

[59]  T. Steitz,et al.  The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. , 2000, Science.

[60]  I. Maxwell Partial removal of bound transfer RNA from polysomes engaged in protein synthesis in vitro after addition of tetracycline. , 1967, Biochimica et biophysica acta.

[61]  C. Cantor,et al.  Role of magnesium in the binding of tetracycline to Escherichia coli ribosomes. , 1971, Journal of molecular biology.

[62]  J. Puglisi,et al.  Structure of the A Site of Escherichia coli 16S Ribosomal RNA Complexed with an Aminoglycoside Antibiotic , 1996, Science.