Automatic classification of patients with Alzheimer's disease from structural MRI: A comparison of ten methods using the ADNI database

[1]  M. Folstein,et al.  Clinical diagnosis of Alzheimer's disease: Report of the NINCDS—ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease , 2011, Neurology.

[2]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[3]  Norbert Schuff,et al.  Optimizing power to track brain degeneration in Alzheimer's disease and mild cognitive impairment with tensor-based morphometry: An ADNI study of 515 subjects , 2009, NeuroImage.

[4]  Moo K. Chung,et al.  Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset , 2009, NeuroImage.

[5]  André J. W. van der Kouwe,et al.  Age-associated alterations in cortical gray and white matter signal intensity and gray to white matter contrast , 2009, NeuroImage.

[6]  Marie Chupin,et al.  Multidimensional classification of hippocampal shape features discriminates Alzheimer's disease and mild cognitive impairment from normal aging , 2009, NeuroImage.

[7]  A. Dale,et al.  Regional rates of neocortical atrophy from normal aging to early Alzheimer disease , 2009, Neurology.

[8]  Alexander Hammers,et al.  Automatic segmentation of the hippocampus and the amygdala driven by hybrid constraints: Method and validation , 2009, NeuroImage.

[9]  C. Davatzikos Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: Results from ADNI , 2009, Alzheimer's & Dementia.

[10]  Arno Klein,et al.  Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration , 2009, NeuroImage.

[11]  H. Benali,et al.  Fully automatic hippocampus segmentation and classification in Alzheimer's disease and mild cognitive impairment applied on data from ADNI , 2009, Hippocampus.

[12]  J. Pariente,et al.  Early diagnosis of Alzheimer's disease using cortical thickness: impact of cognitive reserve , 2009, Brain : a journal of neurology.

[13]  Marie Chupin,et al.  Can voxel based morphometry, manual segmentation and automated segmentation equally detect hippocampal volume differences in acute depression? , 2009, NeuroImage.

[14]  Christos Davatzikos,et al.  Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: Results from ADNI , 2009, NeuroImage.

[15]  H. Benali,et al.  Support vector machine-based classification of Alzheimer’s disease from whole-brain anatomical MRI , 2009, Neuroradiology.

[16]  Michael A Yassa,et al.  A quantitative evaluation of cross-participant registration techniques for MRI studies of the medial temporal lobe , 2009, NeuroImage.

[17]  Jing Li,et al.  Heterogeneous data fusion for alzheimer's disease study , 2008, KDD.

[18]  X. Wu,et al.  Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI , 2008, NeuroImage.

[19]  J. Morris,et al.  The Cortical Signature of Alzheimer's Disease: Regionally Specific Cortical Thinning Relates to Symptom Severity in Very Mild to Mild AD Dementia and is Detectable in Asymptomatic Amyloid-Positive Individuals , 2008, Cerebral cortex.

[20]  H. Benali,et al.  Discrimination between Alzheimer disease, mild cognitive impairment, and normal aging by using automated segmentation of the hippocampus. , 2008, Radiology.

[21]  Xiaoying Wu,et al.  Structural and functional biomarkers of prodromal Alzheimer's disease: A high-dimensional pattern classification study , 2008, NeuroImage.

[22]  S. Resnick,et al.  Detection of prodromal Alzheimer's disease via pattern classification of magnetic resonance imaging , 2008, Neurobiology of Aging.

[23]  Sandra E. Black,et al.  Misclassified Tissue Volumes in Alzheimer Disease Patients With White Matter Hyperintensities: Importance of Lesion Segmentation Procedures for Volumetric Analysis , 2008, Stroke.

[24]  Nick C Fox,et al.  The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods , 2008, Journal of magnetic resonance imaging : JMRI.

[25]  Nick C Fox,et al.  Automatic classification of MR scans in Alzheimer's disease. , 2008, Brain : a journal of neurology.

[26]  et al.,et al.  Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline , 2008, NeuroImage.

[27]  C. Jack,et al.  MRI patterns of atrophy associated with progression to AD in amnestic mild cognitive impairment , 2008, Neurology.

[28]  Clifford R. Jack,et al.  Alzheimer's disease diagnosis in individual subjects using structural MR images: Validation studies , 2008, NeuroImage.

[29]  G. Frisoni,et al.  MRI of hippocampus and entorhinal cortex in mild cognitive impairment: A follow-up study , 2008, Neurobiology of Aging.

[30]  Alan C. Evans,et al.  Automated cortical thickness measurements from MRI can accurately separate Alzheimer's patients from normal elderly controls , 2008, Neurobiology of Aging.

[31]  John Ashburner,et al.  A fast diffeomorphic image registration algorithm , 2007, NeuroImage.

[32]  John G. Csernansky,et al.  Open Access Series of Imaging Studies (OASIS): Cross-sectional MRI Data in Young, Middle Aged, Nondemented, and Demented Older Adults , 2007, Journal of Cognitive Neuroscience.

[33]  P. Scheltens,et al.  Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS–ADRDA criteria , 2007, The Lancet Neurology.

[34]  C. Jack,et al.  3D maps from multiple MRI illustrate changing atrophy patterns as subjects progress from mild cognitive impairment to Alzheimer's disease. , 2007, Brain : a journal of neurology.

[35]  Dominique Hasboun,et al.  Anatomically constrained region deformation for the automated segmentation of the hippocampus and the amygdala: Method and validation on controls and patients with Alzheimer’s disease , 2007, NeuroImage.

[36]  Gunnar Rätsch,et al.  Large Scale Multiple Kernel Learning , 2006, J. Mach. Learn. Res..

[37]  Anders M. Dale,et al.  An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest , 2006, NeuroImage.

[38]  Anders M. Dale,et al.  Reliability in multi-site structural MRI studies: Effects of gradient non-linearity correction on phantom and human data , 2006, NeuroImage.

[39]  William Jagust,et al.  Positron emission tomography and magnetic resonance imaging in the diagnosis and prediction of dementia , 2006, Alzheimer's & Dementia.

[40]  Janaina Mourão Miranda,et al.  Classifying brain states and determining the discriminating activation patterns: Support Vector Machine on functional MRI data , 2005, NeuroImage.

[41]  Dinggang Shen,et al.  Classification of Structural Images via High-Dimensional Image Warping, Robust Feature Extraction, and SVM , 2005, MICCAI.

[42]  Brigitte Landeau,et al.  Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI: A longitudinal MRI study , 2005, NeuroImage.

[43]  Alan C. Evans,et al.  Focal decline of cortical thickness in Alzheimer's disease identified by computational neuroanatomy. , 2004, Cerebral cortex.

[44]  Kiralee M. Hayashi,et al.  Mapping cortical change in Alzheimer's disease, brain development, and schizophrenia , 2004, NeuroImage.

[45]  H Rusinek,et al.  Atrophy rate in medial temporal lobe during progression of Alzheimer disease , 2004, Neurology.

[46]  Nello Cristianini,et al.  A statistical framework for genomic data fusion , 2004, Bioinform..

[47]  Nick C. Fox,et al.  Global and local gray matter loss in mild cognitive impairment and Alzheimer's disease , 2004, NeuroImage.

[48]  Michael I. Jordan,et al.  Multiple kernel learning, conic duality, and the SMO algorithm , 2004, ICML.

[49]  A. Dale,et al.  Thinning of the cerebral cortex in aging. , 2004, Cerebral cortex.

[50]  M. Albert,et al.  Amnestic MCI or prodromal Alzheimer's disease? , 2004, The Lancet Neurology.

[51]  Dinggang Shen,et al.  Morphological classification of brains via high-dimensional shape transformations and machine learning methods , 2004, NeuroImage.

[52]  Nick C Fox,et al.  Imaging cerebral atrophy: normal ageing to Alzheimer's disease , 2004, The Lancet.

[53]  Emma J. Burton,et al.  A comprehensive study of gray matter loss in patients with Alzheimer’s disease using optimized voxel-based morphometry , 2003, NeuroImage.

[54]  Griselda J. Garrido,et al.  A voxel-based morphometry study of temporal lobe gray matter reductions in Alzheimer’s disease , 2003, Neurobiology of Aging.

[55]  Jean-Claude Baron,et al.  Early diagnosis of alzheimer’s disease: contribution of structural neuroimaging , 2003, NeuroImage.

[56]  Kiralee M. Hayashi,et al.  Dynamics of Gray Matter Loss in Alzheimer's Disease , 2003, The Journal of Neuroscience.

[57]  Karl J. Friston,et al.  Automatic Differentiation of Anatomical Patterns in the Human Brain: Validation with Studies of Degenerative Dementias , 2002, NeuroImage.

[58]  Gabriel Gold,et al.  Mixed Dementia: Epidemiology, Diagnosis, and Treatment , 2002, Journal of the American Geriatrics Society.

[59]  N. Tzourio-Mazoyer,et al.  Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain , 2002, NeuroImage.

[60]  Karl J. Friston,et al.  A Voxel-Based Morphometric Study of Ageing in 465 Normal Adult Human Brains , 2001, NeuroImage.

[61]  R. Leahy,et al.  Magnetic Resonance Image Tissue Classification Using a Partial Volume Model , 2001, NeuroImage.

[62]  D. Hill,et al.  Medical image registration , 2001, Physics in medicine and biology.

[63]  A M Dale,et al.  Measuring the thickness of the human cerebral cortex from magnetic resonance images. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[64]  G. Frisoni,et al.  Hippocampus and entorhinal cortex in frontotemporal dementia and Alzheimer’s disease: a morphometric MRI study , 2000, Biological Psychiatry.

[65]  C. Jack,et al.  Usefulness of MRI measures of entorhinal cortex versus hippocampus in AD , 2000, Neurology.

[66]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[67]  A. Convit,et al.  Atrophy of the medial occipitotemporal, inferior, and middle temporal gyri in non-demented elderly predict decline to Alzheimer’s disease☆ , 2000, Neurobiology of Aging.

[68]  E. Tangalos,et al.  Mild Cognitive Impairment Clinical Characterization and Outcome , 1999 .

[69]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[70]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[71]  C. Jack,et al.  Rate of medial temporal lobe atrophy in typical aging and Alzheimer's disease , 1998, Neurology.

[72]  S. Resnick,et al.  An image-processing system for qualitative and quantitative volumetric analysis of brain images. , 1998, Journal of computer assisted tomography.

[73]  H. Soininen,et al.  Volumes of the Entorhinal and Perirhinal Cortices in Alzheimer’s Disease , 1998, Neurobiology of Aging.

[74]  H. Soininen,et al.  MRI of the Hippocampus in Alzheimer’s Disease: Sensitivity, Specificity, and Analysis of the Incorrectly Classified Subjects , 1998, Neurobiology of Aging.

[75]  Alan C. Evans,et al.  A nonparametric method for automatic correction of intensity nonuniformity in MRI data , 1998, IEEE Transactions on Medical Imaging.

[76]  C. Jack,et al.  Medial temporal atrophy on MRI in normal aging and very mild Alzheimer's disease , 1997, Neurology.

[77]  A. Convit,et al.  Specific Hippocampal Volume Reductions in Individuals at Risk for Alzheimer’s Disease , 1997, Neurobiology of Aging.

[78]  P. Narayana,et al.  Compensation for surface coil sensitivity variation in magnetic resonance imaging. , 1988, Magnetic resonance imaging.

[79]  J. Winn,et al.  Brain , 1878, The Lancet.

[80]  D. Selkoe Alzheimer's disease. , 2011, Cold Spring Harbor perspectives in biology.

[81]  A. McKinney,et al.  Automated MRI measures identify individuals with mild cognitive impairment and Alzheimer's disease , 2010 .

[82]  Akram Bakkour,et al.  The cortical signature of prodromal AD Regional thinning predicts mild AD dementia , 2009 .

[83]  C. Jack,et al.  Alzheimer's Disease Neuroimaging Initiative , 2008 .

[84]  Dinggang Shen,et al.  COMPARE: Classification of Morphological Patterns Using Adaptive Regional Elements , 2007, IEEE Transactions on Medical Imaging.

[85]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2004 .

[86]  R. Woods,et al.  Cortical change in Alzheimer's disease detected with a disease-specific population-based brain atlas. , 2001, Cerebral cortex.

[87]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[88]  A. Dale,et al.  High‐resolution intersubject averaging and a coordinate system for the cortical surface , 1999, Human brain mapping.

[89]  Alexander J. Smola,et al.  Learning with kernels , 1998 .

[90]  Vladimir Naumovich Vapni The Nature of Statistical Learning Theory , 1995 .

[91]  P. Jaccard,et al.  Etude comparative de la distribution florale dans une portion des Alpes et des Jura , 1901 .

[92]  Balraj Naren,et al.  Medical Image Registration , 2022 .