Transfinite interpolation over implicitly defined sets

In a general setting, the transfinite interpolation problem requires constructing a single function f(x) that takes on the prescribed values and/or derivatives on some collection of point sets. The sets of points may contain isolated points, bounded or unbounded curves, as well as surfaces and regions of arbitrary topology. All such closed semi-analytic sets may be represented implicitly by real valued functions with guaranteed differential properties. Furthermore, such functions may be constructed automatically using the theory of R-functions. We show that such implicit representations may be used to solve the general transfinite interpolation problem using a generalization of the classical inverse distance weighting interpolation for scattered data. The constructed interpolants may be used to approximate boundary value and smoothing problems in a meshfree manner.

[1]  Brian Wyvill,et al.  Introduction to Implicit Surfaces , 1997 .

[2]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[3]  Vadim Shapiro,et al.  Well-Formed Set Representations of Solids , 1999, Int. J. Comput. Geom. Appl..

[4]  Vadim Shapiro,et al.  Implicit function modeling of solidification in metal castings , 1997 .

[5]  Vadim Shapiro,et al.  Implicit functions with guaranteed differential properties , 1999, SMA '99.

[6]  Nicholas S. Sapidis Designing Fair Curves and Surfaces: Shape Quality in Geometric Modeling and Computer-Aided Design , 1994, Designing Fair Curves and Surfaces.

[7]  Robert J. Renka,et al.  Algorithm 790: CSHEP2D: cubic Shepard method for bivariate interpolation of scattered data , 1988, TOMS.

[8]  D. Shepard A two-dimensional interpolation function for irregularly-spaced data , 1968, ACM National Conference.

[9]  J. Davenport Editor , 1960 .

[10]  Ron Brown,et al.  Algorithm 791: TSHEP2D: cosine series Shepard method for bivariate interpolation of scattered data , 1999, TOMS.

[11]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[12]  Vadim Shapiro,et al.  Real functions for representation of rigid solids , 1994, Comput. Aided Geom. Des..

[13]  Igor G. Tsukanov,et al.  Meshfree simulation of deforming domains , 1999, Comput. Aided Des..

[14]  Peter Lancaster,et al.  Curve and surface fitting - an introduction , 1986 .

[15]  Malcolm A. Sabin Transfinite Surface Interpolation , 1994, IMA Conference on the Mathematics of Surfaces.

[16]  John C. Davis,et al.  Contouring: A Guide to the Analysis and Display of Spatial Data , 1992 .

[17]  A. Waberski Vibration statistics of thin plates with complex form , 1978 .

[18]  Alexei Sourin,et al.  Function representation for sweeping by a moving solid , 1995, IEEE Trans. Vis. Comput. Graph..

[19]  Vadim Shapiro,et al.  On completeness of RFM solution structures , 2000 .

[20]  Josef Hoschek,et al.  Fundamentals of computer aided geometric design , 1996 .

[21]  T. I. Sheiko,et al.  R-Functions in Boundary Value Problems in Mechanics , 1995 .

[22]  William H. Press,et al.  Numerical recipes in C , 2002 .

[23]  Vadim Shapiro,et al.  Theory of R-functions and Applications: A Primer , 1991 .