Cyclic lipopeptide production by plant-associated Pseudomonas spp.: diversity, activity, biosynthesis, and regulation.

Cyclic lipopeptides (CLPs) are versatile molecules produced by a variety of bacterial genera, including plant-associated Pseudomonas spp. CLPs are composed of a fatty acid tail linked to a short oligopeptide, which is cyclized to form a lactone ring between two amino acids in the peptide chain. CLPs are very diverse both structurally and in terms of their biological activity. The structural diversity is due to differences in the length and composition of the fatty acid tail and to variations in the number, type, and configuration of the amino acids in the peptide moiety. CLPs have received considerable attention for their antimicrobial, cytotoxic, and surfactant properties. For plant-pathogenic Pseudomonas spp., CLPs constitute important virulence factors, and pore formation, followed by cell lysis, is their main mode of action. For the antagonistic Pseudomonas sp., CLPs play a key role in antimicrobial activity, motility, and biofilm formation. CLPs are produced via nonribosomal synthesis on large, multifunctional peptide synthetases. Both the structural organization of the CLP synthetic templates and the presence of specific domains and signature sequences within peptide synthetase genes will be described for both pathogenic and antagonistic Pseudomonas spp. Finally, the role of various genes and regulatory mechanisms in CLP production by Pseudomonas spp., including two-component regulation and quorum sensing, will be discussed in detail.

[1]  S. Kanaya,et al.  Phylogenetic analysis of condensation domains in the nonribosomal peptide synthetases. , 2005, FEMS microbiology letters.

[2]  Michel Paquot,et al.  Hemolytic activity of new linear surfactin analogs in relation to their physico-chemical properties. , 2005, Biochimica et biophysica acta.

[3]  D. Gross,et al.  Characterization of a Resistance-Nodulation-Cell Division Transporter System Associated with the syr-syp Genomic Island of Pseudomonas syringae pv. syringae , 2005, Applied and Environmental Microbiology.

[4]  E. Lagendijk,et al.  The Heat Shock Genes dnaK, dnaJ, and grpE Are Involved in Regulation of Putisolvin Biosynthesis in Pseudomonas putida PCL1445 , 2005, Journal of bacteriology.

[5]  J. Nowak,et al.  Use of Plant Growth-Promoting Bacteria for Biocontrol of Plant Diseases: Principles, Mechanisms of Action, and Future Prospects , 2005, Applied and Environmental Microbiology.

[6]  J. Guez,et al.  Mycosubtilin Overproduction by Bacillus subtilis BBG100 Enhances the Organism's Antagonistic and Biocontrol Activities , 2005, Applied and Environmental Microbiology.

[7]  C. Walsh,et al.  SyrB2 in syringomycin E biosynthesis is a nonheme FeII alpha-ketoglutarate- and O2-dependent halogenase. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[8]  O. Nybroe,et al.  Genes Involved in Cyclic Lipopeptide Production Are Important for Seed and Straw Colonization by Pseudomonas sp. Strain DSS73 , 2005, Applied and Environmental Microbiology.

[9]  Rekha Seshadri,et al.  Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5 , 2005, Nature Biotechnology.

[10]  S. Lindow,et al.  Quorum sensing regulates exopolysaccharide production, motility, and virulence in Pseudomonas syringae. , 2005, Molecular plant-microbe interactions : MPMI.

[11]  Z. Chen,et al.  Oligonucleotide microarray analysis of the salA regulon controlling phytotoxin production by Pseudomonas syringae pv. syringae. , 2005, Molecular plant-microbe interactions : MPMI.

[12]  Matt Nolan,et al.  Comparison of the complete genome sequences of Pseudomonas syringae pv. syringae B728a and pv. tomato DC3000. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[13]  D. Haas,et al.  Biological control of soil-borne pathogens by fluorescent pseudomonads , 2005, Nature Reviews Microbiology.

[14]  M. Marahiel,et al.  Molecular mechanisms underlying nonribosomal peptide synthesis: approaches to new antibiotics. , 2005, Chemical reviews.

[15]  A. Scaloni,et al.  Relevance of chlorine-substituent for the antifungal activity of syringomycin and syringotoxin, metabolites of the phytopathogenic bacteriumPseudomonas syringae pv.syringae , 1994, Experientia.

[16]  X. Cui,et al.  Identification of N −3-hydroxyoctanoyl-homoserine lactone production in Pseudomonas fluorescens 5064, pathogenic to broccoli, and controlling biosurfactant production by quorum sensing , 2005, European Journal of Plant Pathology.

[17]  James H Naismith,et al.  Structural aspects of non-ribosomal peptide biosynthesis. , 2004, Current opinion in structural biology.

[18]  A. Scaloni,et al.  Structure, conformation and biological activity of a novel lipodepsipeptide from Pseudomonas corrugata: cormycin A. , 2004, The Biochemical journal.

[19]  Gitanjali Yadav,et al.  NRPS-PKS: a knowledge-based resource for analysis of NRPS/PKS megasynthases , 2004, Nucleic Acids Res..

[20]  T. Stachelhaus,et al.  In Vivo Production of Artificial Nonribosomal Peptide Products in the Heterologous Host Escherichia coli , 2004, Applied and Environmental Microbiology.

[21]  G. Challis,et al.  Substrate recognition by nonribosomal peptide synthetase multi-enzymes. , 2004, Microbiology.

[22]  M. Marahiel,et al.  Mutational analysis of a type II thioesterase associated with nonribosomal peptide synthesis. , 2004, European journal of biochemistry.

[23]  H. Liesegang,et al.  Structural and Functional Characterization of Gene Clusters Directing Nonribosomal Synthesis of Bioactive Cyclic Lipopeptides in Bacillus amyloliquefaciens Strain FZB42 , 2004, Journal of bacteriology.

[24]  J. Vivanco,et al.  Biocontrol of Bacillus subtilis against Infection of Arabidopsis Roots by Pseudomonas syringae Is Facilitated by Biofilm Formation and Surfactin Production1 , 2004, Plant Physiology.

[25]  E. Lagendijk,et al.  Characterization of two Pseudomonas putida lipopeptide biosurfactants, putisolvin I and II, which inhibit biofilm formation and break down existing biofilms , 2003, Molecular microbiology.

[26]  Jos M. Raaijmakers,et al.  Antibiotic production by bacterial biocontrol agents , 2004, Antonie van Leeuwenhoek.

[27]  T. V. van Beek,et al.  Biochemical, Genetic, and Zoosporicidal Properties of Cyclic Lipopeptide Surfactants Produced by Pseudomonas fluorescens , 2003, Applied and Environmental Microbiology.

[28]  J. Soule,et al.  Characterization of the argA Gene Required for Arginine Biosynthesis and Syringomycin Production by Pseudomonas syringae pv. syringae , 2003, Applied and Environmental Microbiology.

[29]  C. Ryu,et al.  Different signaling pathways of induced resistance by rhizobacteria in Arabidopsis thaliana against two pathovars of Pseudomonas syringae. , 2003, The New phytologist.

[30]  S. Kanaya,et al.  Cloning and characterization of the gene cluster encoding arthrofactin synthetase from Pseudomonas sp. MIS38. , 2003, Chemistry & biology.

[31]  J. Soule,et al.  The sypA, sypS, and sypC synthetase genes encode twenty-two modules involved in the nonribosomal peptide synthesis of syringopeptin by Pseudomonas syringae pv. syringae B301D. , 2003, Molecular plant-microbe interactions : MPMI.

[32]  J. Quail,et al.  Structure, chemistry, and biological activity of pseudophomins A and B, new cyclic lipodepsipeptides isolated from the biocontrol bacterium Pseudomonas fluorescens. , 2003, Phytochemistry.

[33]  S. Lindow,et al.  Microbiology of the Phyllosphere , 2003, Applied and Environmental Microbiology.

[34]  Robert Finking,et al.  Biosynthesis of nonribosomal peptides , 2003 .

[35]  Z. Xiaofeng,et al.  Research progress on microbial herbicides , 2003 .

[36]  J. Sørensen,et al.  Production of Cyclic Lipopeptides by Pseudomonas fluorescens Strains in Bulk Soil and in the Sugar Beet Rhizosphere , 2003, Applied and Environmental Microbiology.

[37]  O. Nybroe,et al.  Surface motility in Pseudomonas sp. DSS73 is required for efficient biological containment of the root-pathogenic microfungi Rhizoctonia solani and Pythium ultimum. , 2003, Microbiology.

[38]  C. Pieterse,et al.  Signalling in Rhizobacteria-Induced Systemic Resistance in Arabidopsis thaliana , 2002 .

[39]  O. Nybroe,et al.  Lipopeptide Production in Pseudomonas sp. Strain DSS73 Is Regulated by Components of Sugar Beet Seed Exudate via the Gac Two-Component Regulatory System , 2002, Applied and Environmental Microbiology.

[40]  J. Sørensen,et al.  Antibiotic and Biosurfactant Properties of Cyclic Lipopeptides Produced by Fluorescent Pseudomonas spp. from the Sugar Beet Rhizosphere , 2002, Applied and Environmental Microbiology.

[41]  J. Quail,et al.  Pseudophomins A and B, a class of cyclic lipodepsipeptides isolated from a Pseudomonas species. , 2002, Acta crystallographica. Section C, Crystal structure communications.

[42]  D. K. Willis,et al.  Global Regulation by gidA in Pseudomonas syringae , 2002, Journal of bacteriology.

[43]  M. Gallo,et al.  Pseudomonas lipodepsipeptides and fungal cell wall-degrading enzymes act synergistically in biological control. , 2002, Molecular plant-microbe interactions : MPMI.

[44]  Josh Gewolb Working Outside the Protein-Synthesis Rules , 2002, Science.

[45]  T. Kocagoz,et al.  Antimycobacterial Activity of Lipodepsipeptides Produced by Pseudomonas Syringae Pv Syringae B359 , 2002, Natural product letters.

[46]  Shi-En Lu,et al.  Characterization of the salA, syrF, and syrG regulatory genes located at the right border of the syringomycin gene cluster of Pseudomonas syringae pv. syringae. , 2002, Molecular plant-microbe interactions : MPMI.

[47]  S. Heeb,et al.  Regulatory roles of the GacS/GacA two-component system in plant-associated and other gram-negative bacteria. , 2001, Molecular plant-microbe interactions : MPMI.

[48]  J. Soule,et al.  A physical map of the syringomycin and syringopeptin gene clusters localized to an approximately 145-kb DNA region of Pseudomonas syringae pv. syringae strain B301D. , 2001, Molecular plant-microbe interactions : MPMI.

[49]  K. Tsuge,et al.  Gene yerP, Involved in Surfactin Self-Resistance in Bacillus subtilis , 2001, Antimicrobial Agents and Chemotherapy.

[50]  M. Marahiel,et al.  Portability of epimerization domain and role of peptidyl carrier protein on epimerization activity in nonribosomal peptide synthetases. , 2001, Biochemistry.

[51]  Rasika M. Harshey,et al.  Salmonella enterica Serovar Typhimurium Swarming Mutants with Altered Biofilm-Forming Abilities: Surfactin Inhibits Biofilm Formation , 2001, Journal of bacteriology.

[52]  J. Sørensen,et al.  Pseudomonas fluorescens DR54 Reduces Sclerotia Formation, Biomass Development, and Disease Incidence of Rhizoctonia solani Causing Damping-Off in Sugar Beet , 2001, Microbial Ecology.

[53]  Cyclic lipoundecapeptide amphisin from Pseudomonas sp. strain DSS73. , 2001, Acta crystallographica. Section C, Crystal structure communications.

[54]  J. Klena,et al.  Genetic characterization of Pseudomonas‘NZI7’– a novel pathogen that results in a brown blotch disease of Agaricus bisporus , 2001, Journal of applied microbiology.

[55]  M. Gallo,et al.  Analysis of bacterial lipodepsipeptides by matrix-assisted laser desorption/ionisation time-of-flight and high-performance liquid chromatography with electrospray mass spectrometry. , 2001, Rapid communications in mass spectrometry : RCM.

[56]  D. Kobayashi,et al.  Evidence and characterization of a gene cluster required for the production of viscosin, a lipopeptide biosurfactant, by a strain of Pseudomonas fluorescens. , 2001, Canadian journal of microbiology.

[57]  E. Ron,et al.  Natural roles of biosurfactants. , 2001, Environmental microbiology.

[58]  J. Whipps,et al.  Microbial interactions and biocontrol in the rhizosphere. , 2001, Journal of experimental botany.

[59]  D. Gross,et al.  The contribution of syringopeptin and syringomycin to virulence of Pseudomonas syringae pv. syringae strain B301D on the basis of sypA and syrB1 biosynthesis mutant analysis. , 2001, Molecular plant-microbe interactions : MPMI.

[60]  B. Lugtenberg,et al.  Molecular determinants of rhizosphere colonization by Pseudomonas. , 2001, Annual review of phytopathology.

[61]  T. Imanaka,et al.  A study on the structure-function relationship of lipopeptide biosurfactants. , 2000, Biochimica et biophysica acta.

[62]  Olsson,et al.  Viscosinamide-producing Pseudomonas fluorescens DR54 exerts a biocontrol effect on Pythium ultimum in sugar beet rhizosphere. , 2000, FEMS microbiology ecology.

[63]  J. Sørensen,et al.  Confocal imaging of living fungal hyphae challenged with the fungal antagonist viscosinamide , 2000 .

[64]  G. Challis,et al.  Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. , 2000, Chemistry & biology.

[65]  M. Hamann,et al.  Marine Natural Products as Antituberculosis Agents , 2000 .

[66]  M. Gajhede,et al.  Cyclic lipoundecapeptide tensin from Pseudomonas fluorescens strain 96.578. , 2000, Acta crystallographica. Section C, Crystal structure communications.

[67]  R. Kolter,et al.  Biofilm formation as microbial development. , 2000, Annual review of microbiology.

[68]  Conformations in solution of the fuscopeptins. Phytotoxic metabolites of Pseudomonas fuscovaginae. , 1999, European journal of biochemistry.

[69]  H von Döhren,et al.  The nonribosomal code. , 1999, Chemistry & biology.

[70]  J. Sørensen,et al.  Vital fluorescent stains for detection of stress in Pythium ultimum and Rhizoctonia solani challenged with viscosinamide from Pseudomonas fluorescens DR54 , 1999 .

[71]  T. Stachelhaus,et al.  The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. , 1999, Chemistry & biology.

[72]  M. Ozel,et al.  Antiviral and hemolytic activities of surfactin isoforms and their methyl ester derivatives. , 1999, The Journal of antibiotics.

[73]  David K. Willis,et al.  Swarming by Pseudomonas syringae B728a Requires gacS (lemA) and gacA but Not the Acyl-Homoserine Lactone Biosynthetic GeneahlI , 1999, Journal of bacteriology.

[74]  J. Sørensen,et al.  Viscosinamide, a new cyclic depsipeptide with surfactant and antifungal properties produced by Pseudomonas fluorescens DR54 , 1999, Journal of applied microbiology.

[75]  D. Gross,et al.  Pseudomonas syringae Phytotoxins: Mode of Action, Regulation, and Biosynthesis by Peptide and Polyketide Synthetases , 1999, Microbiology and Molecular Biology Reviews.

[76]  A. Ballio,et al.  The interaction of lipodepsipeptide toxins from Pseudomonas syringae pv. syringae with biological and model membranes: a comparison of syringotoxin, syringomycin, and two syringopeptins. , 1999, Molecular plant-microbe interactions : MPMI.

[77]  J. Bonmatin,et al.  Recent trends in the biochemistry of surfactin , 1999, Applied Microbiology and Biotechnology.

[78]  C. Soler-Rivas,et al.  WLIP, a lipodepsipeptide of Pseudomonas ‘reactans’, as inhibitor of the symptoms of the brown blotch disease of Agaricus bisporus , 1999 .

[79]  G. Grandi,et al.  Characterization of the Syringomycin Synthetase Gene Cluster , 1998, The Journal of Biological Chemistry.

[80]  S. Molin,et al.  N -Acyl-l-Homoserine Lactone Autoinducers Control Production of an Extracellular Lipopeptide Biosurfactant Required for Swarming Motility of Serratia liquefaciens MG1 , 1998 .

[81]  Xuewen Lu,et al.  Role of the biosurfactant viscosin in broccoli head rot caused by a pectolytic strain of Pseudomonas fluorescens , 1998 .

[82]  A. di Nola,et al.  Solution conformation of the Pseudomonas syringae MSU 16H phytotoxic lipodepsipeptide Pseudomycin A determined by computer simulations using distance geometry and molecular dynamics from NMR data. , 1998, European journal of biochemistry.

[83]  A. Scaloni,et al.  Corceptins, new bioactive lipodepsipeptides from cultures of Pseudomonas corrugata , 1998, FEBS letters.

[84]  P. Ferranti,et al.  Coordinate Transcription and Physical Linkage of Domains in Surfactin Synthetase Are Not Essential for Proper Assembly and Activity of the Multienzyme Complex* , 1998, The Journal of Biological Chemistry.

[85]  E. R. Sullivan,et al.  Molecular genetics of biosurfactant production , 1998, Current opinion in biotechnology.

[86]  D. K. Willis,et al.  A newly identified regulator is required for virulence and toxin production in Pseudomonas syringae , 1998, Molecular microbiology.

[87]  Mohamed A. Marahiel,et al.  Modular Peptide Synthetases Involved in Nonribosomal Peptide Synthesis. , 1997, Chemical reviews.

[88]  J Vater,et al.  Mechanism of inactivation of enveloped viruses by the biosurfactant surfactin from Bacillus subtilis. , 1997, Biologicals : journal of the International Association of Biological Standardization.

[89]  P. Brick,et al.  Structural basis for the activation of phenylalanine in the non‐ribosomal biosynthesis of gramicidin S , 1997, The EMBO journal.

[90]  D. Gross,et al.  Analysis of the syrP gene, which regulates syringomycin synthesis by Pseudomonas syringae pv. syringae , 1997, Applied and environmental microbiology.

[91]  D. Gross,et al.  Lipopeptide phytotoxins produced by Pseudomonas syringae pv. syringae: comparison of the biosurfactant and ion channel-forming activities of syringopeptin and syringomycin. , 1997, Molecular plant-microbe interactions : MPMI.

[92]  R. Andersen,et al.  Massetolides A-H, antimycobacterial cyclic depsipeptides produced by two pseudomonads isolated from marine habitats. , 1997, Journal of natural products.

[93]  M. Simmaco,et al.  Biological properties and spectrum of activity ofPseudomonas syringaepv.syringaetoxins , 1997 .

[94]  M. Ozel,et al.  Antimycoplasma properties and application in cell culture of surfactin, a lipopeptide antibiotic from Bacillus subtilis , 1997, Applied and environmental microbiology.

[95]  A. Scaloni,et al.  Structure of fuscopeptins, phytotoxic metabolites of Pseudomonas fuscovaginae , 1996, FEBS letters.

[96]  S. Grewal,et al.  Identification and characterization of a locus which regulates multiple functions in Pseudomonas tolaasii, the cause of brown blotch disease of Agaricus bisporus , 1995, Journal of bacteriology.

[97]  M. Tester,et al.  Role of biosurfactant and ion channel-forming activities of syringomycin in transmembrane ion flux: a model for the mechanism of action in the plant-pathogen interaction. , 1995, Molecular plant-microbe interactions : MPMI.

[98]  D. Gross,et al.  Analysis of the syrB and syrC genes of Pseudomonas syringae pv. syringae indicates that syringomycin is synthesized by a thiotemplate mechanism , 1995, Journal of bacteriology.

[99]  D. K. Willis,et al.  Genetic evidence that the gacA gene encodes the cognate response regulator for the lemA sensor in Pseudomonas syringae , 1994, Journal of bacteriology.

[100]  T. Imanaka,et al.  A new lipopeptide biosurfactant produced by Arthrobacter sp. strain MIS38 , 1993, Journal of bacteriology.

[101]  Y. Mo,et al.  SyrD is required for syringomycin production by Pseudomonas syringae pathovar syringae and is related to a family of ATP‐binding secretion proteins , 1993, Molecular microbiology.

[102]  P. Rainey,et al.  Identification of a gene cluster encoding three high‐molecular‐weight proteins, which is required for synthesis of tolaasin by the mushroom pathogen Pseudomonas tolaasii , 1993, Molecular microbiology.

[103]  K. Johnstone,et al.  Evidence for the involvement of the surface active properties of the extracellular toxin tolaasin in the manifestation of brown blotch disease symptoms by Pseudomonas tolaasii on Agaricus bisporus , 1993 .

[104]  D. K. Willis,et al.  The lemA gene required for pathogenicity of Pseudomonas syringae pv. syringae on bean is a member of a family of two-component regulators , 1992, Journal of bacteriology.

[105]  F. Bossa,et al.  Syringopeptins, new phytotoxic lipodepsipeptides of Pseudomonas syringae pv. syringae , 1991, FEBS letters.

[106]  P. Rainey,et al.  Biological properties and spectrum of activity of tolaasin, a lipodepsipeptide toxin produced by the mushroom pathogen Pseudomonas tolaasii☆ , 1991 .

[107]  K. Mott,et al.  Syringomycin, a bacterial phytotoxin, closes stomata. , 1989, Plant physiology.

[108]  T. Mercado,et al.  Lysis of Trypanosoma cruzi by Pseudomonas fluorescens , 1982, Antimicrobial Agents and Chemotherapy.