An optimized explicit Runge-Kutta method with increased phase-lag order for the numerical solution of the Schrödinger equation and related problems

In this paper we present an optimized explicit Runge-Kutta method, which is based on a method of Fehlberg with six stages and fifth algebraic order and has improved characteristics of the phase-lag error. We measure the efficiency of the new method in comparison to other numerical methods, through the integration of the Schrödinger equation and three other initial value problems.

[1]  T. E. Simos Predictor-corrector phase-fitted methods for Y{double_prime} = F(X,Y) and an application to the Schroedinger equation , 1995 .

[2]  T. E. Simos,et al.  A four-step exponentially fitted method for the numerical solution of the Schrödinger equation , 2006 .

[3]  T. E. Simos,et al.  Some new Numerov-type methods with minimal phase lag for the numerical integration of the radial Schrödinger equation , 1994 .

[4]  C. Enkchescu,et al.  Approximation Capabilities of Neural Networks , 2008 .

[5]  Theodore E. Simos,et al.  Numerical solution of the two-dimensional time independent Schrödinger equation with Numerov-type methods , 2005 .

[6]  Theodore E. Simos,et al.  Bessel and Neumann-fitted Methods for the Numerical Solution of the Radial Schrödinger Equation , 1997, Comput. Chem..

[7]  T. E. Simos,et al.  A Family of Trigonometrically-Fitted Symmetric Methods for the Efficient Solution of the Schrödinger Equation and Related Problems , 2003 .

[8]  Tom E. Simos,et al.  A Numerov-type method for the numerical solution of the radial Schro¨dinger equation , 1991 .

[9]  T. E. Simos,et al.  Atomic structure computations , 2000 .

[10]  G. Avdelas,et al.  A Generator and an Optimized Generator of High-Order Hybrid Explicit Methods for the Numerical Solution of the Schrödinger Equation. Part 1. Development of the Basic Method , 2001 .

[11]  Zacharias A. Anastassi,et al.  Trigonometrically fitted Runge–Kutta methods for the numerical solution of the Schrödinger equation , 2005 .

[12]  G. Avdelas,et al.  Dissipative high phase-lag order numerov-type methods for the numerical solution of the Schrodinger equation , 2000 .

[13]  G. Avdelas,et al.  A Generator and an Optimized Generator of High-Order Hybrid Explicit Methods for the Numerical Solution of the Schrödinger Equation. Part 2. Development of the Generator, Optimization of the Generator and Numerical Results , 2001 .

[14]  Z. Kalogiratou,et al.  Trigonometrically fitted and exponentially fitted symplectic methods for the numerical integration of the Schrödinger equation , 2006 .

[15]  T. E. Simos,et al.  Exponentially - Fitted Multiderivative Methods for the Numerical Solution of the Schrödinger Equation , 2004 .

[16]  K. Tselios,et al.  Symplectic Methods for the Numerical Solution of the Radial Shrödinger Equation , 2003 .

[17]  T. E. Simos,et al.  A family of P-stable exponentially‐fitted methods for the numerical solution of the Schrödinger equation , 1999 .

[18]  M. Rizea,et al.  A numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies , 1980 .

[19]  Zacharoula Kalogiratou,et al.  Exponentially fitted symplectic methods for the numerical integration of the Schrödinger equation , 2003 .

[20]  Phan Thanh An Some Computational Aspects of Helly-type Theorems , 2008 .

[21]  Octavian Frederich,et al.  Prediction of the Flow Around a Short Wall-Mounted Finite Cylinder using LES and DES , 2008 .

[22]  J. M. Franco Runge-Kutta methods adapted to the numerical integration of oscillatory problems , 2004 .

[23]  Hidenori Ogata Fundamental Solution Method for Periodic Plane Elasticity , 2008 .

[24]  Zacharoula Kalogiratou,et al.  Construction of Trigonometrically and Exponentially Fitted Runge–Kutta–Nyström Methods for the Numerical Solution of the Schrödinger Equation and Related Problems – a Method of 8th Algebraic Order , 2002 .

[25]  G. Avdelas,et al.  Embedded eighth order methods for the numerical solution of the Schrödinger equation , 1999 .

[26]  Zacharias A. Anastassi,et al.  A Family of Exponentially-fitted Runge–Kutta Methods with Exponential Order Up to Three for the Numerical Solution of the Schrödinger Equation , 2007 .

[27]  A. Sestini,et al.  Numerical Aspects of the Coefficient Computation for LMMs1 , 2008 .

[28]  T. Simos,et al.  Sixth algebraic order trigonometrically fitted predictor–corrector methods for the numerical solution of the radial Schrödinger equation , 2005 .

[29]  T. E. Simos,et al.  Symmetric Eighth Algebraic Order Methods with Minimal Phase-Lag for the Numerical Solution of the Schrödinger Equation , 2002 .

[30]  Tom E. Simos A New Numerov-Type Method For Computing Eigenvalues And Resonances Of The Radial Schrödinger Equation , 1996 .

[31]  K. Tselios,et al.  Symplectic Methods of Fifth Order for the Numerical Solution of the Radial Shrödinger Equation , 2004 .

[32]  Hans Van de Vyver,et al.  Comparison of some special optimized fourth-order Runge-Kutta methods for the numerical solution of the Schrödinger equation , 2005, Comput. Phys. Commun..

[33]  T. Simos A new explicit Bessel and Neumann fitted eighth algebraic order method for the numerical solution of the Schrödinger equation , 2000 .

[34]  T. E. Simos,et al.  Family of Twelve Steps Exponential Fitting Symmetric Multistep Methods for the Numerical Solution of the Schrödinger Equation , 2002 .

[35]  R.M.M. Mattheij,et al.  BDF Compound-Fast multirate transient analysis with adaptive stepsize control , 2007 .

[36]  Catterina Dagnino,et al.  A Nodal Spline Collocation Method for the Solution of Cauchy Singular Integral Equations , 2008 .

[37]  T. Simos,et al.  The numerical solution of the radial Schrödinger equation via a trigonometrically fitted family of seventh algebraic order Predictor–Corrector methods , 2006 .

[38]  Zacharias A. Anastassi,et al.  Special Optimized Runge-Kutta Methods for IVPs with Oscillating Solutions , 2004 .

[39]  T. E. Simos,et al.  Eighth order methods with minimal phase‐lag for accurate computations for the elastic scattering phase‐shift problem , 1997 .

[40]  Ezio Venturino,et al.  Modelling Environmental Influences on Wanderer Spiders in the Langhe Region (Piemonte -NW Italy) , 2008 .

[41]  Tom E. Simos,et al.  A Modified Phase-Fitted Runge–Kutta Method for the Numerical Solution of the Schrödinger Equation , 2001 .

[42]  D. P. Sakas,et al.  A family of multiderivative methods for the numerical solution of the Schrödinger equation , 2005 .

[43]  T. E. Simos,et al.  New P-Stable Eighth Algebraic Order Exponentially-Fitted Methods for the Numerical Integration of the Schrödinger Equation , 2002 .

[44]  T. E. Simos,et al.  Some embedded modified Runge-Kutta methods for the numerical solution of some specific Schrödinger equations , 1998 .

[45]  T. E. Simos,et al.  A P-Stable Eighth-Order Method for the Numerical Integration of Periodic Initial-Value Problems , 1997 .

[46]  T. E. Simos,et al.  A Family of P-stable Eighth Algebraic Order Methods with Exponential Fitting Facilities , 2001 .

[47]  T. E. Simos,et al.  Numerical methods for the solution of 1D, 2D and 3D differential equations arising in chemical problems , 2002 .

[48]  Frank Uhlig,et al.  Numerical Algorithms with Fortran , 1996 .