Calendar aging of a graphite/LiFePO4 cell

[1]  M. Safari,et al.  Aging of a Commercial Graphite/LiFePO4 Cell , 2011 .

[2]  M. Verbrugge,et al.  Cycle-life model for graphite-LiFePO 4 cells , 2011 .

[3]  M. Dubarry,et al.  Identifying battery aging mechanisms in large format Li ion cells , 2011 .

[4]  M. Safari,et al.  Simulation-Based Analysis of Aging Phenomena in a Commercial Graphite/LiFePO4 Cell , 2011 .

[5]  J. Apt,et al.  Lithium-ion battery cell degradation resulting from realistic vehicle and vehicle-to-grid utilization , 2010 .

[6]  M. Verbrugge,et al.  Aging Mechanisms of LiFePO4 Batteries Deduced by Electrochemical and Structural Analyses , 2010 .

[7]  Matthieu Dubarry,et al.  Identify capacity fading mechanism in a commercial LiFePO4 cell , 2009 .

[8]  Ralph E. White,et al.  Capacity fade analysis of a lithium ion cell , 2008 .

[9]  D. Aurbach,et al.  More on the performance of LiFePO4 electrodes—The effect of synthesis route, solution composition, aging, and temperature , 2007 .

[10]  Robert Kostecki,et al.  Studies of Local Degradation Phenomena in Composite Cathodes for Lithium-Ion Batteries , 2007 .

[11]  Jong-Won Lee,et al.  Simulation of capacity loss in carbon electrode for lithium-ion cells during storage , 2007 .

[12]  Linda F. Nazar,et al.  On the Stability of LiFePO4 Olivine Cathodes under Various Conditions (Electrolyte Solutions, Temperatures) , 2007 .

[13]  M. Dubarry,et al.  Incremental Capacity Analysis and Close-to-Equilibrium OCV Measurements to Quantify Capacity Fade in Commercial Rechargeable Lithium Batteries , 2006 .

[14]  Donghan Kim,et al.  Synthesis of LiFePO4 Nanoparticles in Polyol Medium and Their Electrochemical Properties , 2006 .

[15]  K. Amine,et al.  High-temperature storage and cycling of C-LiFePO4/graphite Li-ion cells , 2005 .

[16]  John Newman,et al.  Cyclable Lithium and Capacity Loss in Li-Ion Cells , 2005 .

[17]  I. Bloom,et al.  Differential voltage analyses of high-power, lithium-ion cells: 1. Technique and application , 2005 .

[18]  Kevin L. Gering,et al.  Differential voltage analyses of high-power lithium-ion cells: 2. Applications , 2005 .

[19]  Karim Zaghib,et al.  LiFePO4/polymer/natural graphite: low cost Li-ion batteries , 2004 .

[20]  Doron Aurbach,et al.  Cycling and storage performance at elevated temperatures of LiNi0.5Mn1.5O4 positive electrodes for advanced 5 V Li-ion batteries , 2004 .

[21]  Ganesan Nagasubramanian,et al.  Accelerated calendar and pulse life analysis of lithium-ion cells , 2003 .

[22]  John B. Kerr,et al.  The role of Li-ion battery electrolyte reactivity in performance decline and self-discharge , 2003 .

[23]  B. Fultz,et al.  Self-discharge study of LiCoO2 cathode materials , 2003 .

[24]  Richard T. Haasch,et al.  Diagnosis of power fade mechanisms in high-power lithium-ion cells☆ , 2003 .

[25]  Karim Zaghib,et al.  LiFePO4/gel/natural graphite cells for the BATT program , 2003 .

[26]  Kaoru Asakura,et al.  Study of life evaluation methods for Li-ion batteries for backup applications , 2003 .

[27]  Joongpyo Shim,et al.  Cycling performance of low-cost lithium ion batteries with natural graphite and LiFePO4 , 2003 .

[28]  R. Spotnitz Simulation of capacity fade in lithium-ion batteries , 2003 .

[29]  Herbert L Case,et al.  Calendar- and cycle-life studies of advanced technology development program generation 1 lithium-ion batteries , 2002 .

[30]  Doron Aurbach,et al.  An analysis of rechargeable lithium-ion batteries after prolonged cycling , 2002 .

[31]  Herbert L Case,et al.  An accelerated calendar and cycle life study of Li-ion cells. , 2001 .

[32]  K. Amine,et al.  Factors responsible for impedance rise in high power lithium ion batteries , 2001 .

[33]  M. Broussely,et al.  Aging mechanism in Li ion cells and calendar life predictions , 2001 .

[34]  B. N. Popov,et al.  Studies on Capacity Fade of Lithium-Ion Batteries , 2000 .

[35]  Ralph E. White,et al.  Characterization of Commercially Available Lithium-Ion Batteries , 1998 .

[36]  John B. Goodenough,et al.  Effect of Structure on the Fe3 + / Fe2 + Redox Couple in Iron Phosphates , 1997 .

[37]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[38]  W. R. McKinnon,et al.  Synthesis conditions and oxygen stoichiometry effects on Li insertion into the spinel LiMn[sub 2]O[sub 4] , 1994 .

[39]  Michael M. Thackeray,et al.  Improved capacity retention in rechargeable 4 V lithium/lithium- manganese oxide (spinel) cells , 1994 .

[40]  Jeff Dahn,et al.  Studies of Lithium Intercalation into Carbons Using Nonaqueous Electrochemical Cells , 1990 .