Isochronicity and normal forms of polynomial systems of ODEs

We propose a generalization of the notion of isochronicity for real polynomial autonomous systems to the case of complex two dimensional systems of ODEs. We study the generalized problem in the case of a quadratic system and a system with homogeneous cubic nonlinearities. Main tools of the study are algorithms of computational algebra based on the Groebner basis theory.

[1]  Christiane Rousseau,et al.  Linearization of Isochronous Centers , 1995 .

[2]  Marco Sabatini,et al.  A survey of isochronous centers , 1999 .

[3]  James H. Davenport,et al.  P-adic reconstruction of rational numbers , 1982, SIGS.

[4]  C. Rousseau,et al.  Nondegenerate linearizable centres of complex planar quadratic and symmetric cubic systems in $\mathbb{C}^2$ , 2001 .

[5]  Jaume Giné,et al.  Characterization of isochronous foci for planar analytic differential systems , 2005, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[6]  Alexander D. Bruno,et al.  A System of Two Differential Equations , 1989 .

[7]  Kazuhiro Yokoyama,et al.  Localization and Primary Decomposition of Polynomial Ideals , 1996, J. Symb. Comput..

[8]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[9]  Patrizia M. Gianni,et al.  Gröbner Bases and Primary Decomposition of Polynomial Ideals , 1988, J. Symb. Comput..

[10]  N. Lloyd,et al.  Algorithmic derivation of isochronicity conditions , 2007 .

[11]  Colin Christopher,et al.  Isochronous centers in planar polynomial systems , 1997 .

[12]  Valery G. Romanovski,et al.  The Center and Cyclicity Problems: A Computational Algebra Approach , 2009 .

[13]  Antonio Algaba,et al.  Characterizing isochronous points and computing isochronous sections , 2009 .

[14]  Carmen Chicone,et al.  Bifurcation of critical periods for plane vector fields , 1989 .

[15]  Valery G. Romanovski,et al.  Linearizability of linear systems perturbed by fifth degree homogeneous polynomials , 2007 .