Observability Analysis and Navigation Algorithm for Distributed Satellites System Using Relative Range Measurements

The problem of navigation for the distributed satellites system using relative range measurements is investigated. Firstly, observability for every participating satellites is analyzed based on the nonlinear Keplerian model containing J2 perturbation and the nonlinear measurements. It is proven that the minimum number of tracking satellites to assure the observability of the distributed satellites system is three. Additionally, the analysis shows that the J2 perturbation and the nonlinearity make little contribution to improve the observability for the navigation. Then, a quasi-consistent extended Kalman filter based navigation algorithm is proposed, which is quasi-consistent and can provide an online evaluation of the navigation precision. The simulation illustrates the feasibility and effectiveness of the proposed navigation algorithm for the distributed satellites system.

[1]  A. Laub,et al.  The singular value decomposition: Its computation and some applications , 1980 .

[2]  Mark E. Campbell,et al.  Multiple agent-based autonomy for satellite constellations , 2000, Artif. Intell..

[3]  Mark L. Psiaki,et al.  AUTONOMOUS LOW-EARTH-ORBIT DETERMINATION FROM MAGNETOMETER AND SUN SENSOR DATA , 1998 .

[4]  Denis Dochain,et al.  On modelling, monitoring and control of fixed bed bioreactors , 1997 .

[5]  David Folta,et al.  Autonomous Navigation of High-Earth Satellites Using Celestial Objects and Doppler Measurements , 2000 .

[6]  George H. Born,et al.  Autonomous Interplanetary Orbit Determination Using Satellite-to-Satellite Tracking , 2007 .

[7]  Mark L. Psiaki,et al.  Autonomous Orbit Determination for Two Spacecraft from Relative Position Measurements , 1998 .

[8]  Robert H. Bishop,et al.  Navigation algorithms and observability analysis for formation flying missions , 2009 .

[9]  W. H. Clohessy,et al.  Terminal Guidance System for Satellite Rendezvous , 2012 .

[10]  N. Montealegre Agent-based artificial immune system model for the detection of faults in a distributed satellite system , 2012, 2012 IEEE First AESS European Conference on Satellite Telecommunications (ESTEL).

[11]  Bob E. Schutz,et al.  Precision orbit determination for TOPEX/POSEIDON , 1994 .

[12]  Khanh Pham,et al.  Autonomous Observability of Networked Multisatellite Systems , 2009 .

[13]  F. Markley,et al.  Autonomous navigation using landmark and intersatellite data , 1984 .

[14]  C. Sabol,et al.  Satellite Formation Flying Design and Evolution , 2001 .

[15]  George H. Born,et al.  Autonomous Orbit Determination from Lunar Halo Orbits Using Crosslink Range , 2008 .

[16]  Haitao Fang,et al.  The consistent extended Kalman filter , 2014, CCC 2014.

[17]  Lin Liu,et al.  Orbit Determination Using Satellite-to-Satellite Tracking Data , 2001 .

[18]  C. Eckart,et al.  A principal axis transformation for non-hermitian matrices , 1939 .

[19]  Matthias Wiegand,et al.  AUTONOMOUS SATELLITE NAVIGATION VIA KALMAN FILTERING OF MAGNETOMETER DATA , 1996 .

[20]  A. K. Grechkoseev,et al.  Study of observability of motion of an orbital group of navigation space system using intersatellite range measurements. I , 2011 .

[21]  I.Y. Bar-Itzhack,et al.  Satellite autonomous navigation and orbit determination using magnetometers , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.