Exploring the Ribose Sub-Pocket of the Substrate-Binding Site in Escherichia coli IspE: Structure-Based Design, Synthesis, and Biological Evaluation of Cytosines and Cytosine Analogues

The enzymes of the non-mevalonate pathway for the isoprenoid biosynthesis are promising targets for the development of selective drugs for the treatment of important infectious diseases. This pathway is used by plants, many eubacteria, and apicomplexan protozoa, including major human pathogens such as Plasmodium falciparum and Mycobacterium tuberculosis, but not by humans who use the mevalonate pathway. In this work, we report on the design, synthesis, and biological evaluation of new ligands for the E. coli enzyme IspE. The focus of the study lies in the analysis of the ribose sub-pocket of the CDP-ME binding site. Therefore, we synthesized cytosine- and 2-aminopyridine-based inhibitors with various substituents targeting this sub-pocket at the enzyme active site. As cytosines display unexpectedly low solubilities in aqueous solution, special efforts were made to increase the water solubility of some compounds while maintaining the good binding affinities measured in earlier studies. In vitro studies showed IC50 values in the low micromolar to submicromolar range against E. coli IspE.

[1]  F. Diederich,et al.  Cycloalkane and alicyclic heterocycle complexation by new switchable resorcin[4]arene-based container molecules: NMR and ITC binding studies. , 2011, Chemistry.

[2]  W. Eisenreich,et al.  Reverse fosmidomycin derivatives against the antimalarial drug target IspC (Dxr). , 2011, Journal of medicinal chemistry.

[3]  T. Carell,et al.  5‐Hydroxymethylcytosin, die sechste Base des Genoms , 2011 .

[4]  W. Eisenreich,et al.  Biochemistry of the non-mevalonate isoprenoid pathway , 2011, Cellular and Molecular Life Sciences.

[5]  L. Salonen,et al.  Aromatische Ringe in chemischer und biologischer Erkennung: Energien und Strukturen , 2011 .

[6]  D. Roos,et al.  Fosmidomycin Uptake into Plasmodium and Babesia-Infected Erythrocytes Is Facilitated by Parasite-Induced New Permeability Pathways , 2011, PloS one.

[7]  Xuehui Chen,et al.  Crystal structure of 4‐diphosphocytidyl‐2‐C‐methyl‐D‐erythritol kinase (IspE) from Mycobacterium tuberculosis , 2011, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[8]  H. Schwalbe,et al.  NMR Studies of DOXP Reductoisomerase and its Inhibitor Complex , 2011, Chembiochem : a European journal of chemical biology.

[9]  P. T. Kaye,et al.  Synthesis and evaluation of phosphonated N-heteroarylcarboxamides as DOXP-reductoisomerase (DXR) inhibitors. , 2011, Bioorganic & medicinal chemistry.

[10]  F. Hanser,et al.  Single-Beat Noninvasive Imaging of Ventricular Endocardial and Epicardial Activation in Patients Undergoing CRT , 2011, PloS one.

[11]  W. Eisenreich,et al.  Biosynthesis of isoprenoids: crystal structure of the [4Fe-4S] cluster protein IspG. , 2010, Journal of molecular biology.

[12]  J. Hoebeke,et al.  Mechanisms of genetically-based resistance to malaria. , 2010, Gene.

[13]  Danny Reinberg,et al.  Molecular Signals of Epigenetic States , 2010, Science.

[14]  W. Reik,et al.  Epigenetic Reprogramming in Plant and Animal Development , 2010, Science.

[15]  C. Wongsrichanalai,et al.  Extensive Drug Resistance in Malaria and Tuberculosis , 2010, Emerging infectious diseases.

[16]  M. Rohmer,et al.  Isoprenoid biosynthesis via the methylerythritol phosphate pathway: structural variations around phosphonate anchor and spacer of fosmidomycin, a potent inhibitor of deoxyxylulose phosphate reductoisomerase. , 2010, The Journal of organic chemistry.

[17]  W. Eisenreich,et al.  Probing the reaction mechanism of IspH protein by x-ray structure analysis , 2009, Proceedings of the National Academy of Sciences.

[18]  S. Abdulla,et al.  Dispersible formulation of artemether/lumefantrine: specifically developed for infants and young children , 2009, Malaria Journal.

[19]  K. Silamut,et al.  Artemisinin resistance in Plasmodium falciparum malaria. , 2009, The New England journal of medicine.

[20]  A. Dicko,et al.  Efficacy and safety of a fixed dose artesunate-sulphamethoxypyrazine-pyrimethamine compared to artemether-lumefantrine for the treatment of uncomplicated falciparum malaria across Africa: a randomized multi-centre trial , 2009, Malaria Journal.

[21]  N. Day,et al.  Plasmodium falciparum pfmdr1 Amplification, Mefloquine Resistance, and Parasite Fitness , 2009, Antimicrobial Agents and Chemotherapy.

[22]  E. Oldfield,et al.  Structure of (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate reductase, the terminal enzyme of the non-mevalonate pathway. , 2008, Journal of the American Chemical Society.

[23]  F. Diederich,et al.  SYNTHESIS OF 1,2,4-TRISUBSTITUTED IMIDAZOLES AND 1,3,5-TRISUBSTITUTED 1,2,4-TRIAZOLES , 2008 .

[24]  G. Klebe,et al.  Studies Addressing the Importance of Charge in the Binding of Fosmidomycin‐Like Molecules to Deoxyxylulosephosphate Reductoisomerase , 2008, ChemMedChem.

[25]  Luzi J. Barandun,et al.  Inhibitors of the kinase IspE: structure-activity relationships and co-crystal structure analysis. , 2008, Organic & biomolecular chemistry.

[26]  Murray N. Robertson,et al.  Characterization of Aquifex aeolicus 4-diphosphocytidyl-2C-methyl-d-erythritol kinase – ligand recognition in a template for antimicrobial drug discovery , 2008, The FEBS journal.

[27]  J. Wiesner,et al.  Synthesis of β- and γ-oxa isosteres of fosmidomycin and FR900098 as antimalarial candidates , 2008 .

[28]  F. Diederich,et al.  Synthesis and Characterization of Cytidine Derivatives that Inhibit the Kinase IspE of the Non‐Mevalonate Pathway for Isoprenoid Biosynthesis , 2008, ChemMedChem.

[29]  B. Kuhn,et al.  Small Molecule Conformational Preferences Derived from Crystal Structure Data. A Medicinal Chemistry Focused Analysis , 2008, J. Chem. Inf. Model..

[30]  A. Djimde,et al.  Monitoring and deterring drug-resistant malaria in the era of combination therapy. , 2007, The American journal of tropical medicine and hygiene.

[31]  M. Machida,et al.  Synthesis of thietane nucleosides by glycosidation of thietanose derivatives with nucleobases , 2007 .

[32]  Ashley L. Ringer,et al.  Models of S/π interactions in protein structures: Comparison of the H2S–benzene complex with PDB data , 2007, Protein science : a publication of the Protein Society.

[33]  J. Wiesner,et al.  Synthesis and evaluation of α,β-unsaturated α-aryl-substituted fosmidomycin analogues as DXR inhibitors , 2007 .

[34]  William N. Hunter,et al.  The Non-mevalonate Pathway of Isoprenoid Precursor Biosynthesis* , 2007, Journal of Biological Chemistry.

[35]  F. Diederich,et al.  Nonphosphate Inhibitors of IspE Protein, a Kinase in the Non‐Mevalonate Pathway for Isoprenoid Biosynthesis and a Potential Target for Antimalarial Therapy , 2007, ChemMedChem.

[36]  F. Diederich,et al.  Structure‐Based Design and Synthesis of the First Weak Non‐Phosphate Inhibitors for IspF, an Enzyme in the Non‐Mevalonate Pathway of Isoprenoid Biosynthesis , 2007 .

[37]  D. Mann,et al.  Using chemical genetics and ATP analogues to dissect protein kinase function. , 2007, ACS chemical biology.

[38]  J. Wiesner,et al.  Divergent strategy for the synthesis of α-aryl-substituted fosmidomycin analogues , 2007 .

[39]  M. Egli,et al.  Lone pair-aromatic interactions: to stabilize or not to stabilize. , 2007, Accounts of chemical research.

[40]  B. Lell,et al.  Randomized Controlled Trial of Fosmidomycin-Clindamycin versus Sulfadoxine-Pyrimethamine in the Treatment of Plasmodium falciparum Malaria , 2007, Antimicrobial Agents and Chemotherapy.

[41]  L. Tong,et al.  Crystal Structure of 1-Deoxy-d-xylulose 5-Phosphate Synthase, a Crucial Enzyme for Isoprenoids Biosynthesis* , 2007, Journal of Biological Chemistry.

[42]  François Diederich,et al.  Molekulare Erkennung von Phosphaten in der Strukturbiologie , 2007 .

[43]  S. L. Macaulay,et al.  A purine analog kinase inhibitor, calcium/calmodulin-dependent protein kinase II inhibitor 59, reveals a role for calcium/calmodulin-dependent protein kinase II in insulin-stimulated glucose transport. , 2007, Endocrinology.

[44]  Markus Fischer,et al.  Nonmevalonate terpene biosynthesis enzymes as antiinfective drug targets: substrate synthesis and high-throughput screening methods. , 2006, The Journal of organic chemistry.

[45]  J. Wiesner,et al.  Fosmidomycin plus Clindamycin for Treatment of Pediatric Patients Aged 1 to 14 Years with Plasmodium falciparum Malaria , 2006, Antimicrobial Agents and Chemotherapy.

[46]  D. Grierson,et al.  The purines: potent and versatile small molecule inhibitors and modulators of key biological targets. , 2006, Bioorganic & medicinal chemistry.

[47]  L. McLaughlin,et al.  Syntheses of pyridine C-nucleosides as analogues of the natural nucleosides dC and dU. , 2006, The Journal of organic chemistry.

[48]  W. Eisenreich,et al.  The crystal structure of a plant 2C‐methyl‐D‐erythritol 4‐phosphate cytidylyltransferase exhibits a distinct quaternary structure compared to bacterial homologues and a possible role in feedback regulation for cytidine monophosphate , 2006, The FEBS journal.

[49]  A. Bacher,et al.  Fluoreszierende Inhibitoren von IspF, einem Enzym im “Nicht‐Mevalonat‐Biosyntheseweg” der Isoprenoide und möglichen Ziel einer Antimalariatherapie , 2006 .

[50]  Xiaodong Zhang,et al.  5-substituted, 6-substituted, and unsubstituted 3-heteroaromatic pyridine analogues of nicotine as selective inhibitors of cytochrome P-450 2A6. , 2005, Journal of medicinal chemistry.

[51]  Roland Lange,et al.  The crystal structure of E.coli 1-deoxy-D-xylulose-5-phosphate reductoisomerase in a ternary complex with the antimalarial compound fosmidomycin and NADPH reveals a tight-binding closed enzyme conformation. , 2005, Journal of molecular biology.

[52]  Dong Hoon Kim,et al.  A new synthetic analogue of thymidine, 7-(3-bromo-phenoxy)-thymidine, inhibits the proliferation of tumor cells. , 2005, Bioorganic & medicinal chemistry letters.

[53]  François Diederich,et al.  Wechselwirkungen mit aromatischen Ringen in chemischen und biologischen Erkennungsprozessen , 2003 .

[54]  S. Yokoyama,et al.  Crystal Structure of 4-(Cytidine 5′-diphospho)-2-C-methyl-d-erythritol kinase, an Enzyme in the Non-mevalonate Pathway of Isoprenoid Synthesis* , 2003, Journal of Biological Chemistry.

[55]  W. Eisenreich,et al.  Biosynthesis of isoprenoids: Crystal structure of 4-diphosphocytidyl-2C-methyl-d-erythritol kinase , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[56]  M. Manoharan,et al.  Structural Basis for Recognition of Guanosine by a Synthetic Tricyclic Cytosine Analogue: Guanidinium G-Clamp , 2003 .

[57]  Shunsuke Yajima,et al.  Crystal structure of 1-deoxy-D-xylulose 5-phosphate reductoisomerase complexed with cofactors: implications of a flexible loop movement upon substrate binding. , 2002, Journal of biochemistry.

[58]  Gerhard Klebe,et al.  Crystal Structure of 1-Deoxy-d-xylulose-5-phosphate Reductoisomerase, a Crucial Enzyme in the Non-mevalonate Pathway of Isoprenoid Biosynthesis* , 2002, The Journal of Biological Chemistry.

[59]  S. Steinbacher,et al.  Structure of 2C-methyl-d-erythritol-2,4-cyclodiphosphate synthase involved in mevalonate-independent biosynthesis of isoprenoids. , 2002, Journal of molecular biology.

[60]  Peter A. Jones,et al.  The Role of DNA Methylation in Mammalian Epigenetics , 2001, Science.

[61]  D. Cane,et al.  Structure of 4-diphosphocytidyl-2-C- methylerythritol synthetase involved in mevalonate- independent isoprenoid biosynthesis , 2001, Nature Structural Biology.

[62]  E. De Clercq,et al.  SYNTHESIS OF 1-(2-DEOXY-β-D-RIBOFURANOSYL)-2,4-DIFLUORO-5-SUBSTITUTED-BENZENES*: “THYMINE REPLACEMENT” ANALOGS OF THYMIDINE FOR EVALUATION AS ANTICANCER AND ANTIVIRAL AGENTS , 2001, Nucleosides, nucleotides & nucleic acids.

[63]  H. Lichtenthaler,et al.  Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. , 1999, Science.

[64]  Paul R. Gerber,et al.  Charge distribution from a simple molecular orbital type calculation and non-bonding interaction terms in the force field MAB , 1998, J. Comput. Aided Mol. Des..

[65]  Paul R. Gerber,et al.  MAB, a generally applicable molecular force field for structure modelling in medicinal chemistry , 1995, J. Comput. Aided Mol. Des..

[66]  G. Arnett,et al.  Carbocyclic analogues of 5-halocytosine nucleosides. , 1986, Journal of medicinal chemistry.

[67]  T. Lincoln,et al.  ATP analog specificity of cAMP-dependent protein kinase, cGMP-dependent protein kinase, and phosphorylase kinase. , 1984, European journal of biochemistry.

[68]  A. Matsuda,et al.  Nucleosides. 123. Synthesis of antiviral nucleosides: 5-substituted 1-(2-deoxy-2-halogeno-beta-D-arabinofuranosyl)cytosines and -uracils. Some structure-activity relationships. , 1983, Journal of medicinal chemistry.

[69]  H. Vorbrüggen,et al.  Nucleoside syntheses, XXII1) Nucleoside synthesis with trimethylsilyl triflate and perchlorate as catalysts , 1981 .

[70]  G. Fronza,et al.  NMR study of four-membered rings. VI. 1H spectra and conformation of thietane-l-oxide and thietane-1,1-dioxide , 1974 .

[71]  Y. Cheng,et al.  Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. , 1973, Biochemical pharmacology.