Nucleation of platinum clusters on biopolymers: a first principles study of the molecular mechanisms

The heterogeneous nucleation of platinum clusters on DNA and proteins is investigated by means of first principles molecular dynamics simulations. We find that a Pt dimer forms from a Pt(II) complex covalently bound to a biopolymer and a free Pt(II) complex after a single reduction step. A water ligand detaches from one of the Pt complexes immediately after the formation of the Pt–Pt bond, which is significantly strengthened as a result. Remarkably, this reaction step is only possible in the presence of strong donor ligands such as purine DNA bases or histidine amino acids, and appears to be forbidden in the corresponding homogeneous dimer formation reaction, which leads to a weaker Pt–Pt bond. Moreover, due to the presence of delocalized electronic states on the heterocyclic ligands, Pt atoms or dimers bound to biopolymers accept reducing electrons more easily than free complexes or dimers. This can explain why noble metal clusters are observed to grow purely heterogeneously on DNA molecules and selectively on histidine amino acids of protein templates in carefully accomplished metallization experiments.

[1]  B. Lundqvist,et al.  Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism , 1976 .

[2]  Microprinting - a new approach to study competitive structure formation on surfaces , 1999 .

[3]  M. Lehmann,et al.  Formation and manipulation of regular metallic nanoparticle arrays on bacterial surface layers: an advanced TEM study , 2001 .

[4]  R. Prins,et al.  Electron spin resonance investigations of platinum supported on Al2O3 and TiO2 , 1983 .

[5]  Wolfgang Pompe,et al.  Fabrication of highly oriented nanocluster arrays by biomolecular templating , 1999 .

[6]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[7]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[8]  Jackman,et al.  Design and fabrication of topologically complex, three-dimensional microstructures , 1998, Science.

[9]  A. Vasil'kov,et al.  Peculiarities of Cobalt Nanometer Scale Particle Nucleation on an Alumina Surface , 1995 .

[10]  Wolfgang Pompe,et al.  Nanoscale palladium metallization of DNA , 2000 .

[11]  R. Finke,et al.  Transition Metal Nanocluster Formation Kinetic and Mechanistic Studies. A New Mechanism When Hydrogen Is the Reductant: Slow, Continuous Nucleation and Fast Autocatalytic Surface Growth , 1997 .

[12]  Hanno Essén,et al.  The characterization of atomic interactions , 1984 .

[13]  S. Quake,et al.  From micro- to nanofabrication with soft materials. , 2000, Science.

[14]  C. Louis,et al.  Nucleation and Particle Growth Processes Involved in the Preparation of Silica-Supported Nickel Materials by a Two-Step Procedure , 1995 .

[15]  Xin Li,et al.  Dictation of the shape of mesoscale semiconductor nanoparticle assemblies by plasmid DNA , 1996 .

[16]  T. Theophanides,et al.  Spécificité de l'interaction DNA‐platine dosage du platine, pH métrie , 1975 .

[17]  Y. Maeda,et al.  Preparation of Platinum Nanoparticles by Sonochemical Reduction of the Pt(II) Ion , 1999 .

[18]  Eric J. Brown,et al.  Decreased Resistance to Bacterial Infection and Granulocyte Defects in IAP-Deficient Mice , 1996, Science.

[19]  R. Prins,et al.  ESR investigations of platinum supported on alumina and titania , 1983 .

[20]  E. Braun,et al.  DNA-templated assembly and electrode attachment of a conducting silver wire , 1998, Nature.

[21]  Wolfgang Pompe,et al.  Construction of highly conductive nanowires on a DNA template , 2001 .

[22]  W. Preetz,et al.  Der Einfluß von cis- und trans-Effekten auf den Ligandenaustausch an gemischten Hexahalogenoosmaten(IV) , 1981 .

[23]  A. Dedieu,et al.  Theoretical studies in palladium and platinum molecular chemistry. , 2000, Chemical reviews.

[24]  J. Richter,et al.  Metallization of DNA , 2003 .

[25]  Stephen Mann,et al.  Synthesis of cadmium sulphide superlattices using self-assembled bacterial S-layers , 1997, Nature.

[26]  Wolfgang Pompe,et al.  DNA as a Selective Metallization Template , 2002 .

[27]  Howard C. Clark,et al.  The trans-influence: its measurement and significance , 1973 .

[28]  Michael Krueger,et al.  Sequence-Specific Molecular Lithography on Single DNA Molecules , 2002, Science.

[29]  W. Pompe,et al.  Growth of Platinum Clusters via Addition of Pt(II) Complexes: A First Principles Investigation , 2003 .

[30]  M. Scheffler,et al.  Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory , 1998, cond-mat/9807418.

[31]  H. Sugiyama,et al.  Theoretical Studies of GG-Specific Photocleavage of DNA via Electron Transfer: Significant Lowering of Ionization Potential and 5‘-Localization of HOMO of Stacked GG Bases in B-Form DNA , 1996 .

[32]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[33]  Wolfgang Pompe,et al.  Three-dimensional metallization of microtubules , 1997 .

[34]  A. Henglein,et al.  Absorption Spectrum and Some Chemical Reactions of Colloidal Platinum in Aqueous Solution , 1995 .

[35]  Wolfgang Pompe,et al.  Low-temperature resistance of DNA-templated nanowires , 2002 .

[36]  M. Sugimoto,et al.  PtIPtI bond energy in dinuclear PtI complexes. A theoretical study , 1997 .

[37]  M Leslie,et al.  The energy and elastic dipole tensor of defects in ionic crystals calculated by the supercell method , 1985 .

[38]  S. Chou,et al.  Ultrafast and direct imprint of nanostructures in silicon , 2002, Nature.

[39]  Paolo Carloni,et al.  Key Steps of the cis-Platin-DNA Interaction: Density Functional Theory-Based Molecular Dynamics Simulations , 2000 .

[40]  Thomas Müller,et al.  PLATINUM(I) DIMERS AND PLATINUM(0) TRIANGLES WITH POLYAROMATIC PHOSPHINE LIGANDS , 1997 .

[41]  G. Whitesides,et al.  Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. , 1991, Science.

[42]  Alexey Bezryadin,et al.  Nanofabrication of electrodes with sub-5 nm spacing for transport experiments on single molecules and metal clusters , 1997 .

[43]  M. Parrinello,et al.  STRUCTURE AND BONDING IN CISPLATIN AND OTHER PT(II) COMPLEXES , 1995 .

[44]  W. E. Ford,et al.  Platinated DNA as Precursors to Templated Chains of Metal Nanoparticles , 2001 .

[45]  Eckhard Dinjus,et al.  Nanoscale Particle Arrays Induced by Highly Ordered Protein Assemblies , 2002 .

[46]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[47]  A. Singh,et al.  Palladium ion assisted formation and metallization of lipid tubules , 1993 .

[48]  Payne,et al.  Periodic boundary conditions in ab initio calculations. , 1995, Physical review. B, Condensed matter.

[49]  N. Seeman,et al.  Design and self-assembly of two-dimensional DNA crystals , 1998, Nature.

[50]  J. Lowell,et al.  Charge transfer across metal-SiO2 interfaces , 1991 .

[51]  W. Pompe,et al.  Initial nucleation of platinum clusters after reduction of K(2)PtCl(4) in aqueous solution: a first principles study. , 2001, Journal of the American Chemical Society.

[52]  D. Appelhans,et al.  Ultrathin Microstructured Polypeptide Layers by Surface-initiated Polymerization on Microprinted Surfaces** , 1999 .

[53]  E. Zangrando,et al.  Theoretical Aspects of the Heterobimetallic Dimers with the T over Square Structural Motif. Synthesis and Structure of a Heteronuclear Platinum and Palladium Complex with 1-Methylcytosinato Bridging Ligands , 1995 .

[54]  Wolfgang Pompe,et al.  Scanning force microscopy of DNA metallization , 2002 .

[55]  S. Menzer,et al.  Linkage isomerism in square-planar complexes of platinum and palladium with histidine and derivatives , 1992 .

[56]  H. Braun,et al.  Thin microstructured polymer films by surface-directed film formation , 1999 .

[57]  R. Hoffmann,et al.  Transition metal pentacoordination , 1975 .