Atomistic-based predictions of crack tip behavior in silicon carbide across a range of temperatures and strain rates

Abstract The utility of silicon carbide (SiC) as an engineering material is often limited by its brittleness. This work attempts to better illuminate the key mechanisms associated with this property by studying crack tip behavior. A multipronged investigative approach is taken, utilizing direct molecular dynamics simulations with empirical potentials, analytic modeling and electronic structure calculations. This approach enables us (i) to make atomistic-based predictions of the key mechanisms that occur at a SiC crack tip across a wide range of temperatures and strain rates; and (ii) to better understand the strengths and deficiencies of these analysis tools for predicting fracture in covalently bonded materials.

[1]  R. Johnson,et al.  Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: A review , 1996 .

[2]  D. Warner,et al.  Origins and implications of temperature-dependent activation energy barriers for dislocation nucleation in face-centered cubic metals , 2009 .

[3]  Krishna Shenai,et al.  Optimum semiconductors for high-power electronics , 1989 .

[4]  A. Evans,et al.  Brittle‐to‐Ductile Transition in Silicon Carbide , 1989 .

[5]  Derek H. Warner,et al.  Coupled quantum–continuum analysis of crack tip processes in aluminum , 2011 .

[6]  E. Tadmor,et al.  Finite-temperature quasicontinuum: molecular dynamics without all the atoms. , 2005, Physical review letters.

[7]  James R. Rice,et al.  Dislocation Nucleation from a Crack Tip" an Analysis Based on the Peierls Concept , 1991 .

[8]  Seunghwa Ryu,et al.  Entropic effect on the rate of dislocation nucleation , 2010, Proceedings of the National Academy of Sciences.

[9]  John R. Rice,et al.  The activation energy for dislocation nucleation at a crack , 1994 .

[10]  D. Warner,et al.  Investigation of crack tip dislocation emission in aluminum using multiscale molecular dynamics simulation and continuum modeling , 2014 .

[11]  R. Hennig,et al.  Ab initio prediction of environmental embrittlement at a crack tip in aluminum , 2012 .

[12]  J. Rabier,et al.  TEM observations of the coexistence of perfect and dissociated dislocations in SiC under high stress , 2005 .

[13]  A. A. Griffith The Phenomena of Rupture and Flow in Solids , 1921 .

[14]  S. Ha,et al.  Core structure and properties of partial dislocations in silicon carbide p-i-n diodes , 2003 .

[15]  M. Buehler,et al.  Atomistic study of the effect of crack tip ledges on the nucleation of dislocations in silicon single crystals at elevated temperature , 2011 .

[16]  H. Kleykamp,et al.  The Constitution of the Silicon-Carbon System , 1993 .

[17]  R. Stevens Dislocation movement and slip systems in β-SiC , 1970 .

[18]  Mariella Ippolito,et al.  Atomistic modeling of brittleness in covalent materials , 2007 .

[19]  A. Nakano,et al.  Brittle dynamic fracture of crystalline cubic silicon carbide "3C-SiC… via molecular dynamics simulation , 2005 .

[20]  Z. Li,et al.  The single-crystal elastic constants of cubic (3C) SiC to 1000° C , 1987 .

[21]  William J. Weber,et al.  Displacement energy surface in 3C and 6H SiC , 2000 .

[22]  H. M. Hobgood,et al.  Transition from brittle fracture to ductile behavior in 4H–SiC , 2003 .

[23]  A. Hartmaier,et al.  Controlling factors for the brittle-to-ductile transition in tungsten single crystals , 1998, Science.

[24]  R. Peierls The size of a dislocation , 1940 .

[25]  J. Rabier,et al.  Dislocations in 4H- and 3C-SiC single crystals in the brittle regime , 2013 .

[26]  Y. Kinoshita,et al.  Ab initio DFT simulation of ideal shear deformation of SiC polytypes , 2007 .

[27]  Ju Li,et al.  AtomEye: an efficient atomistic configuration viewer , 2003 .

[28]  Toshiaki Tsuchiya,et al.  Performance Benefit Assessment of Ceramic Components in an MS9001FA Gas Turbine , 1998 .

[29]  Gumbsch,et al.  Cleavage anisotropy in tungsten single crystals. , 1996, Physical review letters.

[30]  P. Erhart,et al.  Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide , 2005 .

[31]  D. Kuhlmann-wilsdorf,et al.  Shear Stresses and Strain Energies of Edge Dislocations in Anisotropic Cubic Crystals , 1967 .

[32]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[33]  L. Kubin,et al.  On temperature dependence of deformation mechanism and the brittle–ductile transition in semiconductors , 1999 .

[34]  M. Belmonte,et al.  Advanced Ceramic Materials for High Temperature Applications , 2006 .

[35]  A. N. Pilyankevichand,et al.  Motion of partial dislocation in silicon carbide , 1984 .

[36]  D. Warner,et al.  Atomistic predictions of dislocation nucleation with transition state theory , 2011 .

[37]  J. Petrovic,et al.  Fracture Toughness of a Beta‐SiC Whisker , 1984 .

[38]  J. Tersoff,et al.  Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. , 1989, Physical review. B, Condensed matter.

[39]  Ting Zhu,et al.  Temperature and strain-rate dependence of surface dislocation nucleation. , 2008, Physical review letters.

[40]  N. Bernstein,et al.  Lattice trapping barriers to brittle fracture. , 2003, Physical review letters.

[41]  Peter Gumbsch,et al.  An ab initio study of the cleavage anisotropy in silicon , 2000 .

[42]  William J. Weber,et al.  Displacement threshold energies in β-SiC , 1998 .

[43]  T. Schneider,et al.  Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions , 1978 .

[44]  J. E. Sinclair The influence of the interatomic force law and of kinks on the propagation of brittle cracks , 1975 .

[45]  R. Naslain,et al.  SiC-Matrix Composite Materials for Advanced Jet Engines , 2003 .