Archaeological Application of Airborne LiDAR with Object-Based Vegetation Classification and Visualization Techniques at the Lowland Maya Site of Ceibal, Guatemala

JSPS KAKENHI [26101002, 26101003]; Alphawood Foundation; Dumbarton Oaks fellowship; University of Arizona Agnese Nelms Haury program

[1]  Timothy S. Hare,et al.  High-Density LiDAR Mapping of the Ancient City of Mayapán , 2014, Remote. Sens..

[2]  William E. Carter,et al.  Ancient Maya Regional Settlement and Inter-Site Analysis: The 2013 West-Central Belize LiDAR Survey , 2014, Remote. Sens..

[3]  Keith C. Clarke,et al.  Bonemapping: a LiDAR processing and visualization technique in support of archaeology under the canopy , 2015 .

[4]  B. S. Tan,et al.  Uncovering archaeological landscapes at Angkor using lidar , 2013, Proceedings of the National Academy of Sciences.

[5]  William E. Carter,et al.  Capability Assessment and Performance Metrics for the Titan Multispectral Mapping Lidar , 2016, Remote. Sens..

[6]  B. Devereux,et al.  Visualisation of LiDAR terrain models for archaeological feature detection , 2008, Antiquity.

[7]  Julie A. Hoggarth,et al.  Integrating Quantitative Lidar Analysis and Settlement Survey in the Belize River Valley , 2016, Advances in Archaeological Practice.

[8]  Patrick Matgen,et al.  Towards an automated SAR-based flood monitoring system: Lessons learned from two case studies , 2011 .

[9]  J. Brasington,et al.  Object-based land cover classification using airborne LiDAR , 2008 .

[10]  Benjamin Štular,et al.  Visualization of lidar-derived relief models for detection of archaeological features , 2012 .

[11]  S. Prince,et al.  LiDAR for Archaeological Landscape Analysis: A Case Study of Two Eighteenth-Century Maryland Plantation Sites , 2006, American Antiquity.

[12]  Arlen F. Chase,et al.  Airborne LiDAR, archaeology, and the ancient Maya landscape at Caracol, Belize , 2011 .

[13]  Scott R. Hutson,et al.  Small Buildings and Small Budgets , 2016, Advances in Archaeological Practice.

[14]  Zhou Lin,et al.  Detection of subtle tectonic–geomorphic features in densely forested mountains by very high-resolution airborne LiDAR survey , 2013 .

[15]  Wei Gao,et al.  Double Polarization SAR Image Classification based on Object-Oriented Technology , 2010, J. Geogr. Inf. Syst..

[16]  C. Woodcock,et al.  Combining Spectral and Texture Data in the Segmentation of Remotely Sensed Images , 1996 .

[17]  J. Henry,et al.  Envisat multi‐polarized ASAR data for flood mapping , 2006 .

[18]  Amy E. Thompson,et al.  Evaluating airborne LiDAR for detecting settlements and modified landscapes in disturbed tropical environments at Uxbenká, Belize , 2015 .

[19]  Klemen Zaksek,et al.  Sky-View Factor as a Relief Visualization Technique , 2011, Remote. Sens..

[20]  Paolo Forlin,et al.  A Generic Toolkit for the Visualization of Archaeological Features on Airborne LiDAR Elevation Data , 2011 .

[21]  Mark D. McCoy,et al.  Airborne lidar survey of irrigated agricultural landscapes: an application of the slope contrast method , 2011 .

[22]  Scott R. Hutson Adapting LiDAR data for regional variation in the tropics: A case study from the Northern Maya Lowlands , 2015 .

[23]  K. Millard,et al.  Wetland mapping with LiDAR derivatives, SAR polarimetric decompositions, and LiDAR–SAR fusion using a random forest classifier , 2013 .

[24]  Paul D. Bates,et al.  A Change Detection Approach to Flood Mapping in Urban Areas Using TerraSAR-X , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[25]  Kazuo Aoyama,et al.  Early Ceremonial Constructions at Ceibal, Guatemala, and the Origins of Lowland Maya Civilization , 2013, Science.

[26]  Alex C. Lee,et al.  A LiDAR-derived canopy density model for tree stem and crown mapping in Australian forests , 2007 .

[27]  S. M. de Jong,et al.  Airborne laser scanning of forested landslides characterization: terrain model quality and visualization , 2011 .

[28]  Anna M. Redden,et al.  Detection of a low‐relief 18th‐century British siege trench using LiDAR vegetation penetration capabilities at Fort Beauséjour–Fort Cumberland National Historic Site, Canada , 2009 .

[29]  R. Adams Excavations at Seibal: Department of Peten, Guatemala , 1984 .

[30]  L. Drăguţ,et al.  Object-based landform delineation and classification from DEMs for archaeological predictive mapping , 2012 .

[31]  E. Bork,et al.  Integrating LIDAR data and multispectral imagery for enhanced classification of rangeland vegetation: A meta analysis , 2007 .

[32]  Žiga Kokalj,et al.  Application of sky-view factor for the visualisation of historic landscape features in lidar-derived relief models , 2011, Antiquity.

[33]  R. Rosenswig,et al.  Lidar data and the Izapa polity: new results and methodological issues from tropical Mesoamerica , 2015, Archaeological and Anthropological Sciences.

[34]  Arlen F. Chase,et al.  Geospatial revolution and remote sensing LiDAR in Mesoamerican archaeology , 2012, Proceedings of the National Academy of Sciences.

[35]  M. Shirasawa,et al.  Visualizing topography by openness: A new application of image processing to digital elevation models , 2002 .

[36]  Simon D. Jones,et al.  AUTOMATIC CLASSIFICATION OF LAND COVER FEATURES WITH HIGH RESOLUTION IMAGERY AND LIDAR DATA: AN OBJECT-ORIENTED APPROACH , 2005 .

[37]  Ross A. Hill,et al.  A Comparison of Visualization Techniques for Models Created from Airborne Laser Scanned Data , 2012 .

[38]  T. Webster,et al.  Object-oriented land cover classification of lidar-derived surfaces , 2006 .

[39]  Keith C. Clarke,et al.  Perceptually Shaded Slope Maps for the Visualization of Digital Surface Models , 2014, Cartogr. Int. J. Geogr. Inf. Geovisualization.

[40]  Takeshi Inomata,et al.  Development of sedentary communities in the Maya lowlands: Coexisting mobile groups and public ceremonies at Ceibal, Guatemala , 2015, Proceedings of the National Academy of Sciences.

[41]  Kathryn Reese-Taylor,et al.  Boots on the Ground at Yaxnohcah , 2016, Advances in Archaeological Practice.

[42]  M. Cho,et al.  Classification of savanna tree species, in the Greater Kruger National Park region, by integrating hyperspectral and LiDAR data in a Random Forest data mining environment , 2012 .

[43]  Arlen F. Chase,et al.  The Use of LiDAR in Understanding the Ancient Maya Landscape , 2014, Advances in Archaeological Practice.

[44]  M. Nieuwenhuis,et al.  Retrieval of forest structural parameters using LiDAR remote sensing , 2010, European Journal of Forest Research.

[45]  William E. Carter,et al.  Now You See It... Now You Don't: Understanding Airborne Mapping LiDAR Collection and Data Product Generation for Archaeological Research in Mesoamerica , 2014, Remote. Sens..

[46]  Damian H. Evans Airborne laser scanning as a method for exploring long-term socio-ecological dynamics in Cambodia , 2016 .

[47]  Aline Magnoni,et al.  Detection Thresholds of Archaeological Features in Airborne Lidar Data from Central Yucatán , 2016, Advances in Archaeological Practice.

[48]  Andrew K. Scherer,et al.  Reanalyzing Environmental Lidar Data for Archaeology: Mesoamerican Applications and Implications , 2016 .

[49]  R. Shrestha,et al.  High-resolution elevation mapping of the McMurdo Dry Valleys, Antarctica, and surrounding regions , 2017 .

[50]  The Advanced Hydraulic City Structure of the Royal City of Angkor Thom and Vicinity Revealed through a High-Resolution Red Relief Image Map , 2016 .

[51]  Olaf Zielke,et al.  Fault slip and earthquake recurrence along strike-slip faults - Contributions of high-resolution geomorphic data , 2015 .

[52]  Jakob J. van Zyl,et al.  Detection of Inland Open Water Surfaces Using Dual Polarization L-Band Radar for the Soil Moisture Active Passive Mission , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[53]  R. Rosenswig,et al.  Lidar mapping and surface survey of the Izapa state on the tropical piedmont of Chiapas, Mexico , 2013 .