Complete characterization of mixing time for the continuous quantum walk on the hypercube with markovian decoherence model

The n-dimensional hypercube quantum random walk (QRW) is a particularilyappealing example of a quantum walk because it has a natural implementationon a register on n qubits. However, any real implementation will encounterdecoherence effects due to interactions with uncontrollable degrees of freedom.We present a complete characterization of the mixing properties of the hypercubeQRW under a physically relevant Markovian decoherence model. In the localdecoherence model considered the non-unitary dynamics are modeled as a sum ofprojections on individual qubits to an arbitrary direction on the Bloch sphere. Weprove that there is always classical (asymptotic) mixing in this model and specifythe conditions under which instantaneous mixing always exists. And we show thatthe latter mixing property, as well as the classical mixing time, depend heavilyon the exact environmental interaction and its strength. Therefore, algorithmicapplications of the QRW on the hypercube, if they intend to employ mixingproperties, need to consider both the walk dynamics and the precise decoherencemodel.

[1]  Leonid Fedichkin,et al.  Continuous-time quantum walks on a cycle graph (5 pages) , 2006 .

[2]  Viv Kendon,et al.  Decoherence can be useful in quantum walks , 2002, quant-ph/0209005.

[3]  Masoud Mohseni,et al.  Environment-assisted quantum transport , 2008, 0807.0929.

[4]  Barry C. Sanders,et al.  Quantum walks in higher dimensions , 2002 .

[5]  Aharonov,et al.  Quantum Walks , 2012, 1207.7283.

[6]  Alexander Russell,et al.  Quantum Walks on the Hypercube , 2002, RANDOM.

[7]  Andris Ambainis,et al.  Any AND-OR Formula of Size N can be Evaluated in time N^{1/2 + o(1)} on a Quantum Computer , 2010, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[8]  M. B. Plenio,et al.  Dephasing-assisted transport: quantum networks and biomolecules , 2008, 0807.4902.

[9]  Christino Tamon,et al.  Mixing and decoherence in continuous-time quantum walks on cycles , 2006, Quantum Inf. Comput..

[10]  László Lovász,et al.  Random Walks on Graphs: A Survey , 1993 .

[11]  Andris Ambainis,et al.  Quantum walk algorithm for element distinctness , 2003, 45th Annual IEEE Symposium on Foundations of Computer Science.

[12]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[13]  Philip Stamp,et al.  Decoherence and quantum walks: Anomalous diffusion and ballistic tails , 2006, cond-mat/0605097.

[14]  Edward Farhi,et al.  An Example of the Difference Between Quantum and Classical Random Walks , 2002, Quantum Inf. Process..

[15]  Andrew P. Hines,et al.  Decoherence in quantum walks and quantum computers , 2007, 0711.1555.

[16]  Daniel A. Spielman,et al.  Exponential algorithmic speedup by a quantum walk , 2002, STOC '03.

[17]  Peter C. Richter Almost uniform sampling via quantum walks , 2006, quant-ph/0606202.

[18]  Umesh V. Vazirani,et al.  How powerful is adiabatic quantum computation? , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[19]  R. Siri,et al.  Decoherence in the quantum walk on the line , 2004, quant-ph/0403192.

[20]  Andrew M. Childs On the Relationship Between Continuous- and Discrete-Time Quantum Walk , 2008, 0810.0312.

[21]  Viv Kendon,et al.  Decoherence versus entanglement in coined quantum walks , 2006, quant-ph/0612229.

[22]  R. Donangelo,et al.  Decoherent quantum walks driven by a generic coin operation , 2007, 0708.1297.

[23]  Frederick W. Strauch,et al.  Connecting the discrete- and continuous-time quantum walks , 2006 .

[24]  Julia Kempe,et al.  Quantum random walks: An introductory overview , 2003, quant-ph/0303081.

[25]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[26]  Shengyu Zhang,et al.  Every NAND formula of size N can be evaluated in time O ( N 1 2 + ε ) on a quantum computer , 2008 .

[27]  Renato Portugal,et al.  Decoherence in two-dimensional quantum walks , 2006 .

[28]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[29]  K. Birgitta Whaley,et al.  Quantum random-walk search algorithm , 2002, quant-ph/0210064.

[30]  K. Lendi,et al.  Quantum Dynamical Semigroups and Applications , 1987 .

[31]  Masoud Mohseni,et al.  Environment-Assisted Quantum Walks in Energy Transfer of Photosynthetic Complexes , 2008 .

[32]  Colin Cooper,et al.  Randomization and Approximation Techniques in Computer Science , 1999, Lecture Notes in Computer Science.

[33]  R. Portugal,et al.  Mixing Times in Quantum Walks on the Hypercube , 2007, 0712.0625.

[34]  Ofer Biham,et al.  One-dimensional quantum walk with unitary noise , 2003 .

[35]  Leonid Fedichkin,et al.  Continuous-time Quantum Walks on a Cycle , 2005 .

[36]  Andris Ambainis,et al.  Quantum random walks with decoherent coins , 2003 .

[37]  Peter C. Richter Quantum speedup of classical mixing processes , 2006, quant-ph/0609204.

[38]  A. Russell,et al.  Decoherence in quantum walks on the hypercube , 2005, quant-ph/0501169.

[39]  Shengyu Zhang,et al.  Every NAND formula of size N can be evaluated in time N^{1/2+o(1)} on a quantum computer , 2007 .

[40]  Andrew P. Hines,et al.  Quantum walks, quantum gates, and quantum computers , 2007 .

[41]  Robert F. Stengel,et al.  Optimal Control and Estimation , 1994 .

[42]  M. Szegedy,et al.  Quantum Walk Based Search Algorithms , 2008, TAMC.

[43]  R. Siri,et al.  Quantum random walk on the line as a Markovian process , 2004 .

[45]  Andris Ambainis,et al.  Quantum walks on graphs , 2000, STOC '01.

[46]  S. Lloyd,et al.  Environment-assisted quantum walks in photosynthetic energy transfer. , 2008, The Journal of chemical physics.

[47]  Vivien M. Kendon,et al.  Decoherence in quantum walks – a review , 2006, Mathematical Structures in Computer Science.

[48]  E. Sudarshan,et al.  Zeno's paradox in quantum theory , 1976 .

[49]  Andris Ambainis,et al.  Quantum to classical transition for random walks. , 2003, Physical review letters.

[50]  Andris Ambainis,et al.  Quantum walks driven by many coins , 2002, quant-ph/0210161.

[51]  E. Farhi,et al.  Quantum computation and decision trees , 1997, quant-ph/9706062.