Canonical factorization for generalized positive real transfer functions

We prove that given any square multi-input multi-output generalized positive real transfer function matrix, M(s), with minimal state space realization of order n, there always exist two square transfer function matrices, M/sub 1/(s) and M/sub 2/(s), with state space realizations of order n/sub 1/ and n/sub 2/ respectively, with M/sub 1/(s), M/sub 2/(-s) bounded and invertible over the closed right half complex plane, such that M(s)=M/sub 2/(s)M/sub 1/(s), and n=n/sub 1/+n/sub 2/. The existence of such a factorization, commonly termed a canonical factorization, is important in absolute and robust stability results for diagonal LTI parametric uncertainty, which require multi-input multi-output non-causal positive real multipliers. Explicit state space formulae are presented for the canonical factors in terms of a stabilizing solution to a generalized Riccati equation, which is shown to always exist.

[1]  Keith Glover,et al.  Spectral factorization via Hermitian pencils , 1989 .

[2]  P. Lancaster,et al.  Solutions of the Continuous and Discrete Time Algebraic Riccati Equations: A Review , 1991 .

[3]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[4]  Israel Gohberg,et al.  Factorizations of Transfer Functions , 1980 .

[5]  P. Falb,et al.  Stability Conditions for Systems with Monotone and Slope-Restricted Nonlinearities , 1968 .

[6]  Dennis S. Bernstein,et al.  Extensions of mixed-µ bounds to monotonic and odd monotonic nonlinearities using absolute stability theory† , 1994 .

[7]  J. Willems Least squares stationary optimal control and the algebraic Riccati equation , 1971 .

[8]  K. Goh,et al.  Robust synthesis via bilinear matrix inequalities , 1996 .

[9]  Leiba Rodman,et al.  Generalized canonical factorization of matrix and operator functions with definite hermitian part , 1992 .

[10]  R. Saeks,et al.  The analysis of feedback systems , 1972 .

[11]  A. Tits,et al.  Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics , 1991 .

[12]  B. Francis,et al.  A Course in H Control Theory , 1987 .

[13]  Leiba Rodman,et al.  Matrices and indefinite scalar products , 1983 .

[14]  Peter M. Young,et al.  Controller design with mixed uncertainties , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[15]  V. Balakrishnan Linear matrix inequalities in robustness analysis with multipliers , 1995 .

[16]  P. Khargonekar,et al.  STATESPACE SOLUTIONS TO STANDARD 2 H AND H? CONTROL PROBLEMS , 1989 .

[17]  André C. M. Ran,et al.  Dissipative matrices and invariant maximal semidefinite subspaces , 1994 .

[18]  B. Anderson An algebraic solution to the spectral factorization problem , 1967, IEEE Transactions on Automatic Control.

[19]  G. Cohen,et al.  A J-spectral factorization approach to control , 1990 .

[20]  P. Khargonekar,et al.  State-space solutions to standard H/sub 2/ and H/sub infinity / control problems , 1989 .

[21]  Brian D. O. Anderson,et al.  Algebraic Structure of Generalized Positive Real Matrices , 1968 .

[22]  D. Youla,et al.  On the factorization of rational matrices , 1961, IRE Trans. Inf. Theory.

[23]  A. Rantzer A Note on the Kalman-Yakubovich-Popov Lemma , 1995 .

[24]  C. Desoer,et al.  Feedback Systems: Input-Output Properties , 1975 .

[25]  Michael G. SafonovtS Robust Analysis, Sectors, and Quadratic Functionals , 1995 .

[26]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[27]  Paul Van Dooren,et al.  Factorization of transfer functions , 1980 .